Cargando…
CFRP Reinforced Foam Concrete Subjected to Dynamic Compression at Medium Strain Rate
Carbon fiber-reinforced polymer (CFRP)-confined foam concrete can be applied in structure protection, e.g., as an impact barrier of bridge piers, in which it is used as the core of the composite impact barrier. Applying CFRP to the foam concrete exterior enhances both the CFRP and the foam concrete,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982254/ https://www.ncbi.nlm.nih.gov/pubmed/31861390 http://dx.doi.org/10.3390/ma13010010 |
_version_ | 1783491273003368448 |
---|---|
author | Wang, Xiaojuan Liu, Lu Shen, Wenjing Zhou, Hongyuan |
author_facet | Wang, Xiaojuan Liu, Lu Shen, Wenjing Zhou, Hongyuan |
author_sort | Wang, Xiaojuan |
collection | PubMed |
description | Carbon fiber-reinforced polymer (CFRP)-confined foam concrete can be applied in structure protection, e.g., as an impact barrier of bridge piers, in which it is used as the core of the composite impact barrier. Applying CFRP to the foam concrete exterior enhances both the CFRP and the foam concrete, leading to improved compressive performance due to their interaction. In the present study, the carbon-fiber reinforced polymer (CFRP) confining effect on the response and energy absorption of foam concrete subjected to quasi-static and medium-strain-rate dynamic compression was experimentally investigated. The confinement by CFRP changed the response and failure mode of foam concrete specimens from shear in quasi-static load and splitting in dynamic load to crushing, resulting in a significant increase in the load bearing and energy absorption capacity. The composite consisting of CFRP and foam concrete was sensitive to strain rate. In particular, the CFRP–foam concrete interaction led to the remarkably improved resistance and energy absorption capacity of CFRP-confined specimens, which were significantly higher than the sum of those of standalone CFRP and foam concrete. |
format | Online Article Text |
id | pubmed-6982254 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-69822542020-02-07 CFRP Reinforced Foam Concrete Subjected to Dynamic Compression at Medium Strain Rate Wang, Xiaojuan Liu, Lu Shen, Wenjing Zhou, Hongyuan Materials (Basel) Article Carbon fiber-reinforced polymer (CFRP)-confined foam concrete can be applied in structure protection, e.g., as an impact barrier of bridge piers, in which it is used as the core of the composite impact barrier. Applying CFRP to the foam concrete exterior enhances both the CFRP and the foam concrete, leading to improved compressive performance due to their interaction. In the present study, the carbon-fiber reinforced polymer (CFRP) confining effect on the response and energy absorption of foam concrete subjected to quasi-static and medium-strain-rate dynamic compression was experimentally investigated. The confinement by CFRP changed the response and failure mode of foam concrete specimens from shear in quasi-static load and splitting in dynamic load to crushing, resulting in a significant increase in the load bearing and energy absorption capacity. The composite consisting of CFRP and foam concrete was sensitive to strain rate. In particular, the CFRP–foam concrete interaction led to the remarkably improved resistance and energy absorption capacity of CFRP-confined specimens, which were significantly higher than the sum of those of standalone CFRP and foam concrete. MDPI 2019-12-18 /pmc/articles/PMC6982254/ /pubmed/31861390 http://dx.doi.org/10.3390/ma13010010 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Xiaojuan Liu, Lu Shen, Wenjing Zhou, Hongyuan CFRP Reinforced Foam Concrete Subjected to Dynamic Compression at Medium Strain Rate |
title | CFRP Reinforced Foam Concrete Subjected to Dynamic Compression at Medium Strain Rate |
title_full | CFRP Reinforced Foam Concrete Subjected to Dynamic Compression at Medium Strain Rate |
title_fullStr | CFRP Reinforced Foam Concrete Subjected to Dynamic Compression at Medium Strain Rate |
title_full_unstemmed | CFRP Reinforced Foam Concrete Subjected to Dynamic Compression at Medium Strain Rate |
title_short | CFRP Reinforced Foam Concrete Subjected to Dynamic Compression at Medium Strain Rate |
title_sort | cfrp reinforced foam concrete subjected to dynamic compression at medium strain rate |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982254/ https://www.ncbi.nlm.nih.gov/pubmed/31861390 http://dx.doi.org/10.3390/ma13010010 |
work_keys_str_mv | AT wangxiaojuan cfrpreinforcedfoamconcretesubjectedtodynamiccompressionatmediumstrainrate AT liulu cfrpreinforcedfoamconcretesubjectedtodynamiccompressionatmediumstrainrate AT shenwenjing cfrpreinforcedfoamconcretesubjectedtodynamiccompressionatmediumstrainrate AT zhouhongyuan cfrpreinforcedfoamconcretesubjectedtodynamiccompressionatmediumstrainrate |