Cargando…
Global targeting of functional tyrosines using sulfur triazole exchange chemistry
Covalent probes serve as valuable tools for global investigation of protein function and ligand binding capacity. Despite efforts to expand coverage of residues available for chemical proteomics (e.g. cysteine and lysine), a large fraction of the proteome remains inaccessible with current activity-b...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982592/ https://www.ncbi.nlm.nih.gov/pubmed/31768034 http://dx.doi.org/10.1038/s41589-019-0404-5 |
_version_ | 1783491331995205632 |
---|---|
author | Hahm, Heung Sik Toroitich, Emmanuel K. Borne, Adam L. Brulet, Jeffrey W. Libby, Adam H. Yuan, Kun Ware, Timothy B. McCloud, Rebecca L. Ciancone, Anthony M. Hsu, Ku-Lung |
author_facet | Hahm, Heung Sik Toroitich, Emmanuel K. Borne, Adam L. Brulet, Jeffrey W. Libby, Adam H. Yuan, Kun Ware, Timothy B. McCloud, Rebecca L. Ciancone, Anthony M. Hsu, Ku-Lung |
author_sort | Hahm, Heung Sik |
collection | PubMed |
description | Covalent probes serve as valuable tools for global investigation of protein function and ligand binding capacity. Despite efforts to expand coverage of residues available for chemical proteomics (e.g. cysteine and lysine), a large fraction of the proteome remains inaccessible with current activity-based probes. Here, we introduce sulfur-triazole exchange (SuTEx) chemistry as a tunable platform for developing covalent probes with broad applications for chemical proteomics. We show modifications to the triazole leaving group can furnish sulfonyl probes with ~5-fold enhanced chemoselectivity for tyrosines over other nucleophilic amino acids to investigate, for the first time, more than 10,000 tyrosine sites in lysates and live cells. We discover that tyrosines with enhanced nucleophilicity are enriched in enzymatic, protein-protein interaction, and nucleotide recognition domains. We apply SuTEx as a chemical phosphoproteomics strategy to monitor activation of phosphotyrosine sites. Collectively, we describe SuTEx as a biocompatible chemistry for chemical biology investigations of the human proteome. |
format | Online Article Text |
id | pubmed-6982592 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
record_format | MEDLINE/PubMed |
spelling | pubmed-69825922020-05-25 Global targeting of functional tyrosines using sulfur triazole exchange chemistry Hahm, Heung Sik Toroitich, Emmanuel K. Borne, Adam L. Brulet, Jeffrey W. Libby, Adam H. Yuan, Kun Ware, Timothy B. McCloud, Rebecca L. Ciancone, Anthony M. Hsu, Ku-Lung Nat Chem Biol Article Covalent probes serve as valuable tools for global investigation of protein function and ligand binding capacity. Despite efforts to expand coverage of residues available for chemical proteomics (e.g. cysteine and lysine), a large fraction of the proteome remains inaccessible with current activity-based probes. Here, we introduce sulfur-triazole exchange (SuTEx) chemistry as a tunable platform for developing covalent probes with broad applications for chemical proteomics. We show modifications to the triazole leaving group can furnish sulfonyl probes with ~5-fold enhanced chemoselectivity for tyrosines over other nucleophilic amino acids to investigate, for the first time, more than 10,000 tyrosine sites in lysates and live cells. We discover that tyrosines with enhanced nucleophilicity are enriched in enzymatic, protein-protein interaction, and nucleotide recognition domains. We apply SuTEx as a chemical phosphoproteomics strategy to monitor activation of phosphotyrosine sites. Collectively, we describe SuTEx as a biocompatible chemistry for chemical biology investigations of the human proteome. 2019-11-25 2020-02 /pmc/articles/PMC6982592/ /pubmed/31768034 http://dx.doi.org/10.1038/s41589-019-0404-5 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Hahm, Heung Sik Toroitich, Emmanuel K. Borne, Adam L. Brulet, Jeffrey W. Libby, Adam H. Yuan, Kun Ware, Timothy B. McCloud, Rebecca L. Ciancone, Anthony M. Hsu, Ku-Lung Global targeting of functional tyrosines using sulfur triazole exchange chemistry |
title | Global targeting of functional tyrosines using sulfur triazole exchange chemistry |
title_full | Global targeting of functional tyrosines using sulfur triazole exchange chemistry |
title_fullStr | Global targeting of functional tyrosines using sulfur triazole exchange chemistry |
title_full_unstemmed | Global targeting of functional tyrosines using sulfur triazole exchange chemistry |
title_short | Global targeting of functional tyrosines using sulfur triazole exchange chemistry |
title_sort | global targeting of functional tyrosines using sulfur triazole exchange chemistry |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982592/ https://www.ncbi.nlm.nih.gov/pubmed/31768034 http://dx.doi.org/10.1038/s41589-019-0404-5 |
work_keys_str_mv | AT hahmheungsik globaltargetingoffunctionaltyrosinesusingsulfurtriazoleexchangechemistry AT toroitichemmanuelk globaltargetingoffunctionaltyrosinesusingsulfurtriazoleexchangechemistry AT borneadaml globaltargetingoffunctionaltyrosinesusingsulfurtriazoleexchangechemistry AT bruletjeffreyw globaltargetingoffunctionaltyrosinesusingsulfurtriazoleexchangechemistry AT libbyadamh globaltargetingoffunctionaltyrosinesusingsulfurtriazoleexchangechemistry AT yuankun globaltargetingoffunctionaltyrosinesusingsulfurtriazoleexchangechemistry AT waretimothyb globaltargetingoffunctionaltyrosinesusingsulfurtriazoleexchangechemistry AT mccloudrebeccal globaltargetingoffunctionaltyrosinesusingsulfurtriazoleexchangechemistry AT cianconeanthonym globaltargetingoffunctionaltyrosinesusingsulfurtriazoleexchangechemistry AT hsukulung globaltargetingoffunctionaltyrosinesusingsulfurtriazoleexchangechemistry |