Cargando…

Function Extension Based Real-Time Wavelet De-Noising Method for Projectile Attitude Measurement

The real-time measurement of the projectile attitude is the key to realize the whole process guidance of the projectile. Due to the high dynamic characteristics of the projectile motion, the attitude measurement is affected by the real-time and accuracy of the gyro signal de-noising. For the nonline...

Descripción completa

Detalles Bibliográficos
Autores principales: Deng, Zhihong, Wang, Jinwen, Liang, Xinyu, Liu, Ning
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982740/
https://www.ncbi.nlm.nih.gov/pubmed/31905850
http://dx.doi.org/10.3390/s20010200
Descripción
Sumario:The real-time measurement of the projectile attitude is the key to realize the whole process guidance of the projectile. Due to the high dynamic characteristics of the projectile motion, the attitude measurement is affected by the real-time and accuracy of the gyro signal de-noising. For the nonlinear discontinuity of the conventional extension method in real-time wavelet de-noising, a function extension real-time wavelet de-noising method is proposed in this paper. In this method, a prediction model of gyro signal is established based on the Roggla formula. According to the model, the signal is fitted in the sliding window, and the signal of the same length is predicted to realize the right boundary extension. The simulation and experiment results show that compared with the traditional extension method, the proposed method can in-crease the signal-to-noise ratio (SNR) and the smoothness, and can decrease the attitude mean absolute error (AMAE) and the attitude root mean square error (ARMSE). Moreover, the time delay caused by signal de-noising can be effectively solved. The real-time performance of the attitude measurement can be ensured.