Cargando…
Using Machine Learning for the Calibration of Airborne Particulate Sensors
Airborne particulates are of particular significance for their human health impacts and their roles in both atmospheric radiative transfer and atmospheric chemistry. Observations of airborne particulates are typically made by environmental agencies using rather expensive instruments. Due to the expe...
Autores principales: | Wijeratne, Lakitha O.H., Kiv, Daniel R., Aker, Adam R., Talebi, Shawhin, Lary, David J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982762/ https://www.ncbi.nlm.nih.gov/pubmed/31877977 http://dx.doi.org/10.3390/s20010099 |
Ejemplares similares
-
Machine Learning for Light Sensor Calibration
por: Zhang, Yichao, et al.
Publicado: (2021) -
Decoding Physical and Cognitive Impacts of Particulate Matter Concentrations at Ultra-Fine Scales
por: Talebi, Shawhin, et al.
Publicado: (2022) -
Autonomous Learning of New Environments with a Robotic Team Employing Hyper-Spectral Remote Sensing, Comprehensive In-Situ Sensing and Machine Learning
por: Lary, David J., et al.
Publicado: (2021) -
Using machine learning to estimate atmospheric Ambrosia pollen concentrations in Tulsa, OK
por: Liu, Xun, et al.
Publicado: (2017) -
Applying Deep Neural Networks and Ensemble Machine Learning Methods to Forecast Airborne Ambrosia Pollen
por: Zewdie, Gebreab K., et al.
Publicado: (2019)