Cargando…
Reference-Driven Compressed Sensing MR Image Reconstruction Using Deep Convolutional Neural Networks without Pre-Training
Deep learning has proven itself to be able to reduce the scanning time of Magnetic Resonance Imaging (MRI) and to improve the image reconstruction quality since it was introduced into Compressed Sensing MRI (CS-MRI). However, the requirement of using large, high-quality, and patient-based datasets f...
Autores principales: | Zhao, Di, Zhao, Feng, Gan, Yongjin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982784/ https://www.ncbi.nlm.nih.gov/pubmed/31935887 http://dx.doi.org/10.3390/s20010308 |
Ejemplares similares
-
Reference-Driven Undersampled MR Image Reconstruction Using Wavelet Sparsity-Constrained Deep Image Prior
por: Zhao, Di, et al.
Publicado: (2021) -
Compressed Sensing MR Image Reconstruction Exploiting TGV and Wavelet Sparsity
por: Zhao, Di, et al.
Publicado: (2014) -
Reconstruction of Compressed-sensing MR Imaging Using Deep Residual Learning in the Image Domain
por: Ouchi, Shohei, et al.
Publicado: (2020) -
A Hybrid Residual Attention Convolutional Neural Network for Compressed Sensing Magnetic Resonance Image Reconstruction
por: Hossain, Md. Biddut, et al.
Publicado: (2023) -
Compressive Sensing Spectroscopy Using a Residual Convolutional Neural Network
por: Kim, Cheolsun, et al.
Publicado: (2020)