Cargando…
Modeling Physico-Chemical ADMET Endpoints with Multitask Graph Convolutional Networks
Simple physico-chemical properties, like logD, solubility, or melting point, can reveal a great deal about how a compound under development might later behave. These data are typically measured for most compounds in drug discovery projects in a medium throughput fashion. Collecting and assembling al...
Autores principales: | Montanari, Floriane, Kuhnke, Lara, Ter Laak, Antonius, Clevert, Djork-Arné |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982787/ https://www.ncbi.nlm.nih.gov/pubmed/31877719 http://dx.doi.org/10.3390/molecules25010044 |
Ejemplares similares
-
Learning continuous and data-driven molecular descriptors by translating equivalent chemical representations
por: Winter, Robin, et al.
Publicado: (2018) -
Img2Mol – accurate SMILES recognition from molecular graphical depictions
por: Clevert, Djork-Arné, et al.
Publicado: (2021) -
Equivariant
Graph Neural Networks for Toxicity Prediction
por: Cremer, Julian, et al.
Publicado: (2023) -
Efficient multi-objective molecular optimization in a continuous latent space
por: Winter, Robin, et al.
Publicado: (2019) -
A Fast and Interpretable
Deep Learning Approach for
Accurate Electrostatics-Driven pK(a) Predictions
in Proteins
por: Reis, Pedro B.P.S., et al.
Publicado: (2022)