Cargando…
Vehicle Trajectory Prediction and Collision Warning via Fusion of Multisensors and Wireless Vehicular Communications
Driver inattention is one of the leading causes of traffic crashes worldwide. Providing the driver with an early warning prior to a potential collision can significantly reduce the fatalities and level of injuries associated with vehicle collisions. In order to monitor the vehicle surroundings and p...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982806/ https://www.ncbi.nlm.nih.gov/pubmed/31947961 http://dx.doi.org/10.3390/s20010288 |
Sumario: | Driver inattention is one of the leading causes of traffic crashes worldwide. Providing the driver with an early warning prior to a potential collision can significantly reduce the fatalities and level of injuries associated with vehicle collisions. In order to monitor the vehicle surroundings and predict collisions, on-board sensors such as radar, lidar, and cameras are often used. However, the driving environment perception based on these sensors can be adversely affected by a number of factors such as weather and solar irradiance. In addition, potential dangers cannot be detected if the target is located outside the limited field-of-view of the sensors, or if the line of sight to the target is occluded. In this paper, we propose an approach for designing a vehicle collision warning system based on fusion of multisensors and wireless vehicular communications. A high-level fusion of radar, lidar, camera, and wireless vehicular communication data was performed to predict the trajectories of remote targets and generate an appropriate warning to the driver prior to a possible collision. We implemented and evaluated the proposed vehicle collision system in virtual driving environments, which consisted of a vehicle–vehicle collision scenario and a vehicle–pedestrian collision scenario. |
---|