Cargando…
Neural Network Ensembles for Sensor-Based Human Activity Recognition Within Smart Environments
In this paper, we focus on data-driven approaches to human activity recognition (HAR). Data-driven approaches rely on good quality data during training, however, a shortage of high quality, large-scale, and accurately annotated HAR datasets exists for recognizing activities of daily living (ADLs) wi...
Autores principales: | Irvine, Naomi, Nugent, Chris, Zhang, Shuai, Wang, Hui, NG, Wing W. Y. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982871/ https://www.ncbi.nlm.nih.gov/pubmed/31905991 http://dx.doi.org/10.3390/s20010216 |
Ejemplares similares
-
Clustering-Based Ensemble Learning for Activity Recognition in Smart Homes
por: Jurek, Anna, et al.
Publicado: (2014) -
Radial Basis Function Neural Network with Localized Stochastic-Sensitive Autoencoder for Home-Based Activity Recognition
por: Ng, Wing W.Y., et al.
Publicado: (2020) -
Human activity recognition and behaviour analysis: for cyber-physical systems in smart environments
por: Chen, Liming, et al.
Publicado: (2019) -
Using Convolutional Neural Networks with Multiple Thermal Sensors for Unobtrusive Pose Recognition
por: Burns, Matthew, et al.
Publicado: (2020) -
Finger language recognition based on ensemble artificial neural network learning using armband EMG sensors
por: Kim, Seongjung, et al.
Publicado: (2018)