Cargando…
Time Series Multiple Channel Convolutional Neural Network with Attention-Based Long Short-Term Memory for Predicting Bearing Remaining Useful Life
This paper proposes two deep learning methods for remaining useful life (RUL) prediction of bearings. The methods have the advantageous end-to-end property that they take raw data as input and generate the predicted RUL directly. They are TSMC-CNN, which stands for the time series multiple channel c...
Autores principales: | Jiang, Jehn-Ruey, Lee, Juei-En, Zeng, Yi-Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982940/ https://www.ncbi.nlm.nih.gov/pubmed/31888110 http://dx.doi.org/10.3390/s20010166 |
Ejemplares similares
-
Real-time estimation of the remaining surgery duration for cataract surgery using deep convolutional neural networks and long short-term memory
por: Wang, Bowen, et al.
Publicado: (2023) -
Recognition Method of Massage Techniques Based on Attention Mechanism and Convolutional Long Short-Term Memory Neural Network
por: Zhu, Shengding, et al.
Publicado: (2022) -
Light convolutional neural network by neural architecture search and model pruning for bearing fault diagnosis and remaining useful life prediction
por: Ruan, Diwang, et al.
Publicado: (2023) -
Multiscale Hybrid Convolutional Deep Neural Networks with Channel Attention
por: Yang, Hua, et al.
Publicado: (2022) -
Multiple neural states of representation in short-term memory? It’s a matter of attention
por: LaRocque, Joshua J., et al.
Publicado: (2014)