Cargando…
Study on the Classification Performance of Underwater Sonar Image Classification Based on Convolutional Neural Networks for Detecting a Submerged Human Body †
Auto-detecting a submerged human body underwater is very challenging with the absolute necessity to a diver or a submersible. For the vision sensor, the water turbidity and limited light condition make it difficult to take clear images. For this reason, sonar sensors are mainly utilized in water. Ho...
Autores principales: | Nguyen, Huu-Thu, Lee, Eon-Ho, Lee, Sejin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982957/ https://www.ncbi.nlm.nih.gov/pubmed/31877929 http://dx.doi.org/10.3390/s20010094 |
Ejemplares similares
-
Data augmentation using image translation for underwater sonar image segmentation
por: Lee, Eon-ho, et al.
Publicado: (2022) -
Classification of Sonar Targets in Air: A Neural Network Approach
por: Kroh, Patrick K., et al.
Publicado: (2019) -
A novel underwater dam crack detection and classification approach based on sonar images
por: Shi, Pengfei, et al.
Publicado: (2017) -
Atrial fibrillation classification based on convolutional neural networks
por: Lee, Kwang-Sig, et al.
Publicado: (2019) -
Feature Fusion Based on Graph Convolution Network for Modulation Classification in Underwater Communication
por: Yao, Xiaohui, et al.
Publicado: (2023)