Cargando…
Concentration-Dependent Effects of N-3 Long-Chain Fatty Acids on Na,K-ATPase Activity in Human Endothelial Cells
N-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) seem to prevent endothelial dysfunction, a crucial step in atherogenesis, by modulating the levels of vasoactive molecules and by influencing Na,K-ATPase activity of vascular myocytes. The activity of endothelial Na,K-ATPase controls the...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982972/ https://www.ncbi.nlm.nih.gov/pubmed/31905689 http://dx.doi.org/10.3390/molecules25010128 |
_version_ | 1783491412235386880 |
---|---|
author | Cazzola, Roberta Della Porta, Matteo Castiglioni, Sara Pinotti, Luciano Maier, Jeanette A.M. Cestaro, Benvenuto |
author_facet | Cazzola, Roberta Della Porta, Matteo Castiglioni, Sara Pinotti, Luciano Maier, Jeanette A.M. Cestaro, Benvenuto |
author_sort | Cazzola, Roberta |
collection | PubMed |
description | N-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) seem to prevent endothelial dysfunction, a crucial step in atherogenesis, by modulating the levels of vasoactive molecules and by influencing Na,K-ATPase activity of vascular myocytes. The activity of endothelial Na,K-ATPase controls the ionic homeostasis of the neighboring cells, as well as cell function. However, controversy exists with respect to the vascular protective effect of EPA and DHA. We argue that this dispute might be due to the use of different concentrations of EPA and DHA in different studies. Therefore, this study was designed to define an optimal concentration of EPA and DHA to investigate endothelial function. For this purpose, human endothelial cells were exposed for 24 h to different concentrations of DHA or EPA (0–20 μM) to study membrane fluidity, peroxidation potential and Na,K-ATPase activity. EPA and DHA were linearly incorporated and this incorporation was mirrored by the linear increase of unsaturation index, membrane fluidity, and peroxidation potential. Na,K-ATPase activity peaked at 3.75 μM of EPA and DHA and then gradually decreased. It is noteworthy that DHA effects were always more pronounced than EPA. Concluding, low concentrations of EPA and DHA minimize peroxidation sensitivity and optimize Na,K-ATPase activity. |
format | Online Article Text |
id | pubmed-6982972 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-69829722020-02-06 Concentration-Dependent Effects of N-3 Long-Chain Fatty Acids on Na,K-ATPase Activity in Human Endothelial Cells Cazzola, Roberta Della Porta, Matteo Castiglioni, Sara Pinotti, Luciano Maier, Jeanette A.M. Cestaro, Benvenuto Molecules Article N-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) seem to prevent endothelial dysfunction, a crucial step in atherogenesis, by modulating the levels of vasoactive molecules and by influencing Na,K-ATPase activity of vascular myocytes. The activity of endothelial Na,K-ATPase controls the ionic homeostasis of the neighboring cells, as well as cell function. However, controversy exists with respect to the vascular protective effect of EPA and DHA. We argue that this dispute might be due to the use of different concentrations of EPA and DHA in different studies. Therefore, this study was designed to define an optimal concentration of EPA and DHA to investigate endothelial function. For this purpose, human endothelial cells were exposed for 24 h to different concentrations of DHA or EPA (0–20 μM) to study membrane fluidity, peroxidation potential and Na,K-ATPase activity. EPA and DHA were linearly incorporated and this incorporation was mirrored by the linear increase of unsaturation index, membrane fluidity, and peroxidation potential. Na,K-ATPase activity peaked at 3.75 μM of EPA and DHA and then gradually decreased. It is noteworthy that DHA effects were always more pronounced than EPA. Concluding, low concentrations of EPA and DHA minimize peroxidation sensitivity and optimize Na,K-ATPase activity. MDPI 2019-12-28 /pmc/articles/PMC6982972/ /pubmed/31905689 http://dx.doi.org/10.3390/molecules25010128 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Cazzola, Roberta Della Porta, Matteo Castiglioni, Sara Pinotti, Luciano Maier, Jeanette A.M. Cestaro, Benvenuto Concentration-Dependent Effects of N-3 Long-Chain Fatty Acids on Na,K-ATPase Activity in Human Endothelial Cells |
title | Concentration-Dependent Effects of N-3 Long-Chain Fatty Acids on Na,K-ATPase Activity in Human Endothelial Cells |
title_full | Concentration-Dependent Effects of N-3 Long-Chain Fatty Acids on Na,K-ATPase Activity in Human Endothelial Cells |
title_fullStr | Concentration-Dependent Effects of N-3 Long-Chain Fatty Acids on Na,K-ATPase Activity in Human Endothelial Cells |
title_full_unstemmed | Concentration-Dependent Effects of N-3 Long-Chain Fatty Acids on Na,K-ATPase Activity in Human Endothelial Cells |
title_short | Concentration-Dependent Effects of N-3 Long-Chain Fatty Acids on Na,K-ATPase Activity in Human Endothelial Cells |
title_sort | concentration-dependent effects of n-3 long-chain fatty acids on na,k-atpase activity in human endothelial cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982972/ https://www.ncbi.nlm.nih.gov/pubmed/31905689 http://dx.doi.org/10.3390/molecules25010128 |
work_keys_str_mv | AT cazzolaroberta concentrationdependenteffectsofn3longchainfattyacidsonnakatpaseactivityinhumanendothelialcells AT dellaportamatteo concentrationdependenteffectsofn3longchainfattyacidsonnakatpaseactivityinhumanendothelialcells AT castiglionisara concentrationdependenteffectsofn3longchainfattyacidsonnakatpaseactivityinhumanendothelialcells AT pinottiluciano concentrationdependenteffectsofn3longchainfattyacidsonnakatpaseactivityinhumanendothelialcells AT maierjeanetteam concentrationdependenteffectsofn3longchainfattyacidsonnakatpaseactivityinhumanendothelialcells AT cestarobenvenuto concentrationdependenteffectsofn3longchainfattyacidsonnakatpaseactivityinhumanendothelialcells |