Cargando…
Enhanced Human Activity Recognition Based on Smartphone Sensor Data Using Hybrid Feature Selection Model
Human activity recognition (HAR) techniques are playing a significant role in monitoring the daily activities of human life such as elderly care, investigation activities, healthcare, sports, and smart homes. Smartphones incorporated with varieties of motion sensors like accelerometers and gyroscope...
Autores principales: | Ahmed, Nadeem, Rafiq, Jahir Ibna, Islam, Md Rashedul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6983014/ https://www.ncbi.nlm.nih.gov/pubmed/31935943 http://dx.doi.org/10.3390/s20010317 |
Ejemplares similares
-
A Robust Feature Extraction Model for Human Activity Characterization Using 3-Axis Accelerometer and Gyroscope Data
por: Ahmed Bhuiyan, Rasel, et al.
Publicado: (2020) -
A Novel Hybrid Gradient-Based Optimizer and Grey Wolf Optimizer Feature Selection Method for Human Activity Recognition Using Smartphone Sensors
por: Helmi, Ahmed Mohamed, et al.
Publicado: (2021) -
Enhanced Human Activity Recognition Using Wearable Sensors via a Hybrid Feature Selection Method
por: Fan, Changjun, et al.
Publicado: (2021) -
Human activity recognition
:
using wearable sensors and smartphones
por: Labrador, Miguel A, et al.
Publicado: (2014) -
Human Physical Activity Recognition Using Smartphone Sensors
por: Voicu, Robert-Andrei, et al.
Publicado: (2019)