Cargando…
Radioisotope Identification and Nonintrusive Depth Estimation of Localized Low-Level Radioactive Contaminants Using Bayesian Inference
Obtaining the in-depth information of radioactive contaminants is crucial for determining the most cost-effective decommissioning strategy. The main limitations of a burial depth analysis lie in the assumptions that foreknowledge of buried radioisotopes present at the site is always available and th...
Autores principales: | Kim, Jinhwan, Lim, Kyung Taek, Ko, Kilyoung, Ko, Eunbie, Cho, Gyuseong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6983033/ https://www.ncbi.nlm.nih.gov/pubmed/31877932 http://dx.doi.org/10.3390/s20010095 |
Ejemplares similares
-
A Bayesian Approach for Remote Depth Estimation of Buried Low-Level Radioactive Waste with a NaI(Tl) Detector
por: Kim, Jinhwan, et al.
Publicado: (2019) -
Discrete Convolution-Based Energy Spectrum Configuring Method for the Analysis of the Intrinsic Radiation of (176)Lu
por: Ko, Kilyoung, et al.
Publicado: (2021) -
Uncertainty Estimation of the Dose Rate in Real-Time Applications Using Gaussian Process Regression
por: Kim, Jinhwan, et al.
Publicado: (2020) -
Pixel-Grouping G(E) Functions for Estimating Dose Rates from Unknown Source Distributions with a Position-Sensitive Detector
por: Kim, Hojik, et al.
Publicado: (2023) -
A Novel Method for Remote Depth Estimation of Buried Radioactive Contamination
por: Ukaegbu, Ikechukwu Kevin, et al.
Publicado: (2018)