Cargando…
Triplet Loss Guided Adversarial Domain Adaptation for Bearing Fault Diagnosis
Recently, deep learning methods are becomingincreasingly popular in the field of fault diagnosis and achieve great success. However, since the rotation speeds and load conditions of rotating machines are subject to change during operations, the distribution of labeled training dataset for intelligen...
Autores principales: | Wang, Xiaodong, Liu, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6983071/ https://www.ncbi.nlm.nih.gov/pubmed/31935949 http://dx.doi.org/10.3390/s20010320 |
Ejemplares similares
-
Cross-Machine Fault Diagnosis with Semi-Supervised Discriminative Adversarial Domain Adaptation
por: Wang, Xiaodong, et al.
Publicado: (2020) -
A new intelligent bearing fault diagnosis model based on triplet network and SVM
por: Yang, Kaisi, et al.
Publicado: (2022) -
Unsupervised Domain Adaptive 1D-CNN for Fault Diagnosis of Bearing
por: Shao, Xiaorui, et al.
Publicado: (2022) -
Online Domain Adaptation for Rolling Bearings Fault Diagnosis with Imbalanced Cross-Domain Data
por: Chao, Ko-Chieh, et al.
Publicado: (2022) -
Multi-Representation Domain Adaptation Network with Duplex Adversarial Learning for Hot-Rolling Mill Fault Diagnosis
por: Peng, Rongrong, et al.
Publicado: (2022)