Cargando…
Global Optimal Structured Embedding Learning for Remote Sensing Image Retrieval
A rich line of works focus on designing elegant loss functions under the deep metric learning (DML) paradigm to learn a discriminative embedding space for remote sensing image retrieval (RSIR). Essentially, such embedding space could efficiently distinguish deep feature descriptors. So far, most exi...
Autores principales: | Liu, Pingping, Gou, Guixia, Shan, Xue, Tao, Dan, Zhou, Qiuzhan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6983082/ https://www.ncbi.nlm.nih.gov/pubmed/31948002 http://dx.doi.org/10.3390/s20010291 |
Ejemplares similares
-
Fusing Feature Distribution Entropy with R-MAC Features in Image Retrieval
por: Liu, Pingping, et al.
Publicado: (2019) -
Relative Distribution Entropy Loss Function in CNN Image Retrieval
por: Liu, Pingping, et al.
Publicado: (2020) -
Remote sensing image description based on word embedding and end-to-end deep learning
por: Wang, Yuan, et al.
Publicado: (2021) -
Soil Moisture Content Retrieval from Remote Sensing Data by Artificial Neural Network Based on Sample Optimization
por: Liu, Qixin, et al.
Publicado: (2022) -
Adaptive Segmentation of Remote Sensing Images Based on Global Spatial Information
por: Li, Muqing, et al.
Publicado: (2019)