Cargando…
A Machine Condition Monitoring Framework Using Compressed Signal Processing
The vibration monitoring of ball bearings of a rotating machinery is a crucial aspect for smooth functioning and sustainability of plants. The wireless vibration monitoring using conventional Nyquist sampling techniques is costly in terms of power consumption, as it generates lots of data that need...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6983155/ https://www.ncbi.nlm.nih.gov/pubmed/31935948 http://dx.doi.org/10.3390/s20010319 |
_version_ | 1783491454792892416 |
---|---|
author | Rani, Meenu Dhok, Sanjay Deshmukh, Raghavendra |
author_facet | Rani, Meenu Dhok, Sanjay Deshmukh, Raghavendra |
author_sort | Rani, Meenu |
collection | PubMed |
description | The vibration monitoring of ball bearings of a rotating machinery is a crucial aspect for smooth functioning and sustainability of plants. The wireless vibration monitoring using conventional Nyquist sampling techniques is costly in terms of power consumption, as it generates lots of data that need to be processed. To overcome this issue, compressive sensing (CS) can be employed, which directly acquires the signal in compressed form and hence reduces power consumption. The compressive measurements so generated can easily be transmitted to the base station and the original signal can be recovered there using CS reconstruction algorithms to diagnose the faults. However, the CS reconstruction is very costly in terms of computational time and power. Hence, this conventional CS framework is not suitable for diagnosing the machinery faults in real time. In this paper, a bearing condition monitoring framework is presented based on compressed signal processing (CSP). The CSP is a newer research area of CS, in which inference problems are solved without reconstructing the original signal back from compressive measurements. By omitting the reconstruction efforts, the proposed method significantly improves the time and power cost. This leads to faster processing of compressive measurements for solving the required inference problems for machinery condition monitoring. This gives a way to diagnose the machinery faults in real-time. A comparison of proposed scheme with the conventional method shows that the proposed scheme lowers the computational efforts while simultaneously achieving the comparable fault classification accuracy. |
format | Online Article Text |
id | pubmed-6983155 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-69831552020-02-06 A Machine Condition Monitoring Framework Using Compressed Signal Processing Rani, Meenu Dhok, Sanjay Deshmukh, Raghavendra Sensors (Basel) Article The vibration monitoring of ball bearings of a rotating machinery is a crucial aspect for smooth functioning and sustainability of plants. The wireless vibration monitoring using conventional Nyquist sampling techniques is costly in terms of power consumption, as it generates lots of data that need to be processed. To overcome this issue, compressive sensing (CS) can be employed, which directly acquires the signal in compressed form and hence reduces power consumption. The compressive measurements so generated can easily be transmitted to the base station and the original signal can be recovered there using CS reconstruction algorithms to diagnose the faults. However, the CS reconstruction is very costly in terms of computational time and power. Hence, this conventional CS framework is not suitable for diagnosing the machinery faults in real time. In this paper, a bearing condition monitoring framework is presented based on compressed signal processing (CSP). The CSP is a newer research area of CS, in which inference problems are solved without reconstructing the original signal back from compressive measurements. By omitting the reconstruction efforts, the proposed method significantly improves the time and power cost. This leads to faster processing of compressive measurements for solving the required inference problems for machinery condition monitoring. This gives a way to diagnose the machinery faults in real-time. A comparison of proposed scheme with the conventional method shows that the proposed scheme lowers the computational efforts while simultaneously achieving the comparable fault classification accuracy. MDPI 2020-01-06 /pmc/articles/PMC6983155/ /pubmed/31935948 http://dx.doi.org/10.3390/s20010319 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rani, Meenu Dhok, Sanjay Deshmukh, Raghavendra A Machine Condition Monitoring Framework Using Compressed Signal Processing |
title | A Machine Condition Monitoring Framework Using Compressed Signal Processing |
title_full | A Machine Condition Monitoring Framework Using Compressed Signal Processing |
title_fullStr | A Machine Condition Monitoring Framework Using Compressed Signal Processing |
title_full_unstemmed | A Machine Condition Monitoring Framework Using Compressed Signal Processing |
title_short | A Machine Condition Monitoring Framework Using Compressed Signal Processing |
title_sort | machine condition monitoring framework using compressed signal processing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6983155/ https://www.ncbi.nlm.nih.gov/pubmed/31935948 http://dx.doi.org/10.3390/s20010319 |
work_keys_str_mv | AT ranimeenu amachineconditionmonitoringframeworkusingcompressedsignalprocessing AT dhoksanjay amachineconditionmonitoringframeworkusingcompressedsignalprocessing AT deshmukhraghavendra amachineconditionmonitoringframeworkusingcompressedsignalprocessing AT ranimeenu machineconditionmonitoringframeworkusingcompressedsignalprocessing AT dhoksanjay machineconditionmonitoringframeworkusingcompressedsignalprocessing AT deshmukhraghavendra machineconditionmonitoringframeworkusingcompressedsignalprocessing |