Cargando…
A Neuron-Based Kalman Filter with Nonlinear Autoregressive Model
The control effect of various intelligent terminals is affected by the data sensing precision. The filtering method has been the typical soft computing method used to promote the sensing level. Due to the difficult recognition of the practical system and the empirical parameter estimation in the tra...
Autores principales: | Bai, Yu-ting, Wang, Xiao-yi, Jin, Xue-bo, Zhao, Zhi-yao, Zhang, Bai-hai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6983156/ https://www.ncbi.nlm.nih.gov/pubmed/31948060 http://dx.doi.org/10.3390/s20010299 |
Ejemplares similares
-
Mid-State Kalman Filter for Nonlinear Problems
por: Liu, Zhengwei, et al.
Publicado: (2022) -
A Nonlinear Integrated Modeling Method of Extended Kalman Filter Based on Adaboost Algorithm
por: Zhou, Feng-Bo, et al.
Publicado: (2021) -
Double-Layer Cubature Kalman Filter for Nonlinear Estimation †
por: Yang, Feng, et al.
Publicado: (2019) -
Hybrid Cubature Kalman filtering for identifying nonlinear models from sampled recording: Estimation of neuronal dynamics
por: Madi, Mahmoud K., et al.
Publicado: (2017) -
Extended Kalman Filter for Estimation of Parameters in Nonlinear State-Space Models of Biochemical Networks
por: Sun, Xiaodian, et al.
Publicado: (2008)