Cargando…
A Comparative Analysis of Machine/Deep Learning Models for Parking Space Availability Prediction
Machine/Deep Learning (ML/DL) techniques have been applied to large data sets in order to extract relevant information and for making predictions. The performance and the outcomes of different ML/DL algorithms may vary depending upon the data sets being used, as well as on the suitability of algorit...
Autores principales: | Awan, Faraz Malik, Saleem, Yasir, Minerva, Roberto, Crespi, Noel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6983166/ https://www.ncbi.nlm.nih.gov/pubmed/31935953 http://dx.doi.org/10.3390/s20010322 |
Ejemplares similares
-
Improving Road Traffic Forecasting Using Air Pollution and Atmospheric Data: Experiments Based on LSTM Recurrent Neural Networks
por: Awan, Faraz Malik, et al.
Publicado: (2020) -
Visual Detection and Image Processing of Parking Space Based on Deep Learning
por: Huang, Chen, et al.
Publicado: (2022) -
Model-Based Predictive Control and Reinforcement Learning for Planning Vehicle-Parking Trajectories for Vertical Parking Spaces
por: Shi, Junren, et al.
Publicado: (2023) -
Networks and new services
por: Minerva, Roberto, et al.
Publicado: (2016) -
Hierarchical Trajectory Planning for Narrow-Space Automated Parking with Deep Reinforcement Learning: A Federated Learning Scheme
por: Yuan, Zheng, et al.
Publicado: (2023)