Cargando…
Tackling Faults in the Industry 4.0 Era—A Survey of Machine-Learning Solutions and Key Aspects
The recent advancements in the fields of artificial intelligence (AI) and machine learning (ML) have affected several research fields, leading to improvements that could not have been possible with conventional optimization techniques. Among the sectors where AI/ML enables a plethora of opportunitie...
Autores principales: | Angelopoulos, Angelos, Michailidis, Emmanouel T., Nomikos, Nikolaos, Trakadas, Panagiotis, Hatziefremidis, Antonis, Voliotis, Stamatis, Zahariadis, Theodore |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6983262/ https://www.ncbi.nlm.nih.gov/pubmed/31878065 http://dx.doi.org/10.3390/s20010109 |
Ejemplares similares
-
Hybrid Clouds for Data-Intensive, 5G-Enabled IoT Applications: An Overview, Key Issues and Relevant Architecture
por: Trakadas, Panagiotis, et al.
Publicado: (2019) -
A Survey on Machine-Learning Techniques for UAV-Based Communications
por: Bithas, Petros S., et al.
Publicado: (2019) -
On the Performance Evaluation of a MIMO–WCDMA Transmission Architecture for Building Management Systems
por: Tsampasis, Eleftherios, et al.
Publicado: (2018) -
Energy Optimization in Dual-RIS UAV-Aided MEC-Enabled Internet of Vehicles
por: Michailidis, Emmanouel T., et al.
Publicado: (2021) -
Fault Handling in Industry 4.0: Definition, Process and Applications
por: Webert, Heiko, et al.
Publicado: (2022)