Cargando…

Introducing neuromodulation in deep neural networks to learn adaptive behaviours

Animals excel at adapting their intentions, attention, and actions to the environment, making them remarkably efficient at interacting with a rich, unpredictable and ever-changing external world, a property that intelligent machines currently lack. Such an adaptation property relies heavily on cellu...

Descripción completa

Detalles Bibliográficos
Autores principales: Vecoven, Nicolas, Ernst, Damien, Wehenkel, Antoine, Drion, Guillaume
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6984695/
https://www.ncbi.nlm.nih.gov/pubmed/31986189
http://dx.doi.org/10.1371/journal.pone.0227922
Descripción
Sumario:Animals excel at adapting their intentions, attention, and actions to the environment, making them remarkably efficient at interacting with a rich, unpredictable and ever-changing external world, a property that intelligent machines currently lack. Such an adaptation property relies heavily on cellular neuromodulation, the biological mechanism that dynamically controls intrinsic properties of neurons and their response to external stimuli in a context-dependent manner. In this paper, we take inspiration from cellular neuromodulation to construct a new deep neural network architecture that is specifically designed to learn adaptive behaviours. The network adaptation capabilities are tested on navigation benchmarks in a meta-reinforcement learning context and compared with state-of-the-art approaches. Results show that neuromodulation is capable of adapting an agent to different tasks and that neuromodulation-based approaches provide a promising way of improving adaptation of artificial systems.