Cargando…
Introducing neuromodulation in deep neural networks to learn adaptive behaviours
Animals excel at adapting their intentions, attention, and actions to the environment, making them remarkably efficient at interacting with a rich, unpredictable and ever-changing external world, a property that intelligent machines currently lack. Such an adaptation property relies heavily on cellu...
Autores principales: | Vecoven, Nicolas, Ernst, Damien, Wehenkel, Antoine, Drion, Guillaume |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6984695/ https://www.ncbi.nlm.nih.gov/pubmed/31986189 http://dx.doi.org/10.1371/journal.pone.0227922 |
Ejemplares similares
-
A bio-inspired bistable recurrent cell allows for long-lasting memory
por: Vecoven, Nicolas, et al.
Publicado: (2021) -
Effects of neuromodulation-inspired mechanisms on the performance of deep neural networks in a spatial learning task
por: Mei, Jie, et al.
Publicado: (2023) -
Introducing principles of synaptic integration in the optimization of deep neural networks
por: Dellaferrera, Giorgia, et al.
Publicado: (2022) -
The functional role of sequentially neuromodulated synaptic plasticity in behavioural learning
por: Ang, Grace Wan Yu, et al.
Publicado: (2021) -
A Scalable Framework for Closed-Loop Neuromodulation with Deep Learning
por: Gebodh, Nigel, et al.
Publicado: (2023)