Cargando…
A novel small molecule compound VCP979 improves ventricular remodeling in murine models of myocardial ischemia/reperfusion injury
Persistent ventricular remodeling following myocardial ischemia/reperfusion (MI/R) injury results in functional decompensation and eventual progression to heart failure. VCP979, a novel small-molecule compound developed in-house, possesses anti-inflammatory and anti-fibrotic activities. In the prese...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6984775/ https://www.ncbi.nlm.nih.gov/pubmed/31789413 http://dx.doi.org/10.3892/ijmm.2019.4413 |
Sumario: | Persistent ventricular remodeling following myocardial ischemia/reperfusion (MI/R) injury results in functional decompensation and eventual progression to heart failure. VCP979, a novel small-molecule compound developed in-house, possesses anti-inflammatory and anti-fibrotic activities. In the present study, no significant pathological effect was observed following the administration of VCP979 on multiple organs in mice and no difference of aspartate transaminase/alanine aminotransferase/lactate dehydrogenase levels was found in murine serum. Treatment with VCP979 ameliorated cardiac dysfunction, pathological myocardial fibrosis and hypertrophy in murine MI/R injury models. The administration of VCP979 also inhibited the infiltration of inflammatory cells and the pro-inflammatory cytokine expression in hearts post MI/R injury. Further results revealed that the addition of VCP979 prevented the primary neonatal cardiac fibroblasts (NCFs) from Angiotensin II (Ang II)-induced collagen synthesis and neonatal cardiac myocytes (NCMs) hypertrophy. In addition, VCP979 attenuated the activation of p38-mitogen-activated protein kinase in both Ang II-induced NCFs and hearts subjected to MI/R injury. These findings indicated that the novel small-molecule compound VCP979 can improve ventricular remodeling in murine hearts against MI/R injury, suggesting its potential therapeutic function in patients subjected to MI/R injury. |
---|