Cargando…

Cell-type-specific control of basolateral amygdala neuronal circuits via entorhinal cortex-driven feedforward inhibition

The basolateral amygdala (BLA) plays a vital role in associating sensory stimuli with salient valence information. Excitatory principal neurons (PNs) undergo plastic changes to encode this association; however, local BLA inhibitory interneurons (INs) gate PN plasticity via feedforward inhibition (FF...

Descripción completa

Detalles Bibliográficos
Autores principales: Guthman, E Mae, Garcia, Joshua D, Ma, Ming, Chu, Philip, Baca, Serapio M, Smith, Katharine R, Restrepo, Diego, Huntsman, Molly M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6984813/
https://www.ncbi.nlm.nih.gov/pubmed/31916940
http://dx.doi.org/10.7554/eLife.50601
_version_ 1783491700877950976
author Guthman, E Mae
Garcia, Joshua D
Ma, Ming
Chu, Philip
Baca, Serapio M
Smith, Katharine R
Restrepo, Diego
Huntsman, Molly M
author_facet Guthman, E Mae
Garcia, Joshua D
Ma, Ming
Chu, Philip
Baca, Serapio M
Smith, Katharine R
Restrepo, Diego
Huntsman, Molly M
author_sort Guthman, E Mae
collection PubMed
description The basolateral amygdala (BLA) plays a vital role in associating sensory stimuli with salient valence information. Excitatory principal neurons (PNs) undergo plastic changes to encode this association; however, local BLA inhibitory interneurons (INs) gate PN plasticity via feedforward inhibition (FFI). Despite literature implicating parvalbumin expressing (PV(+)) INs in FFI in cortex and hippocampus, prior anatomical experiments in BLA implicate somatostatin expressing (Sst(+)) INs. The lateral entorhinal cortex (LEC) projects to BLA where it drives FFI. In the present study, we explored the role of interneurons in this circuit. Using mice, we combined patch clamp electrophysiology, chemogenetics, unsupervised cluster analysis, and predictive modeling and found that a previously unreported subpopulation of fast-spiking Sst(+) INs mediate LEC→BLA FFI.
format Online
Article
Text
id pubmed-6984813
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-69848132020-01-29 Cell-type-specific control of basolateral amygdala neuronal circuits via entorhinal cortex-driven feedforward inhibition Guthman, E Mae Garcia, Joshua D Ma, Ming Chu, Philip Baca, Serapio M Smith, Katharine R Restrepo, Diego Huntsman, Molly M eLife Neuroscience The basolateral amygdala (BLA) plays a vital role in associating sensory stimuli with salient valence information. Excitatory principal neurons (PNs) undergo plastic changes to encode this association; however, local BLA inhibitory interneurons (INs) gate PN plasticity via feedforward inhibition (FFI). Despite literature implicating parvalbumin expressing (PV(+)) INs in FFI in cortex and hippocampus, prior anatomical experiments in BLA implicate somatostatin expressing (Sst(+)) INs. The lateral entorhinal cortex (LEC) projects to BLA where it drives FFI. In the present study, we explored the role of interneurons in this circuit. Using mice, we combined patch clamp electrophysiology, chemogenetics, unsupervised cluster analysis, and predictive modeling and found that a previously unreported subpopulation of fast-spiking Sst(+) INs mediate LEC→BLA FFI. eLife Sciences Publications, Ltd 2020-01-09 /pmc/articles/PMC6984813/ /pubmed/31916940 http://dx.doi.org/10.7554/eLife.50601 Text en © 2020, Guthman et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Neuroscience
Guthman, E Mae
Garcia, Joshua D
Ma, Ming
Chu, Philip
Baca, Serapio M
Smith, Katharine R
Restrepo, Diego
Huntsman, Molly M
Cell-type-specific control of basolateral amygdala neuronal circuits via entorhinal cortex-driven feedforward inhibition
title Cell-type-specific control of basolateral amygdala neuronal circuits via entorhinal cortex-driven feedforward inhibition
title_full Cell-type-specific control of basolateral amygdala neuronal circuits via entorhinal cortex-driven feedforward inhibition
title_fullStr Cell-type-specific control of basolateral amygdala neuronal circuits via entorhinal cortex-driven feedforward inhibition
title_full_unstemmed Cell-type-specific control of basolateral amygdala neuronal circuits via entorhinal cortex-driven feedforward inhibition
title_short Cell-type-specific control of basolateral amygdala neuronal circuits via entorhinal cortex-driven feedforward inhibition
title_sort cell-type-specific control of basolateral amygdala neuronal circuits via entorhinal cortex-driven feedforward inhibition
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6984813/
https://www.ncbi.nlm.nih.gov/pubmed/31916940
http://dx.doi.org/10.7554/eLife.50601
work_keys_str_mv AT guthmanemae celltypespecificcontrolofbasolateralamygdalaneuronalcircuitsviaentorhinalcortexdrivenfeedforwardinhibition
AT garciajoshuad celltypespecificcontrolofbasolateralamygdalaneuronalcircuitsviaentorhinalcortexdrivenfeedforwardinhibition
AT maming celltypespecificcontrolofbasolateralamygdalaneuronalcircuitsviaentorhinalcortexdrivenfeedforwardinhibition
AT chuphilip celltypespecificcontrolofbasolateralamygdalaneuronalcircuitsviaentorhinalcortexdrivenfeedforwardinhibition
AT bacaserapiom celltypespecificcontrolofbasolateralamygdalaneuronalcircuitsviaentorhinalcortexdrivenfeedforwardinhibition
AT smithkathariner celltypespecificcontrolofbasolateralamygdalaneuronalcircuitsviaentorhinalcortexdrivenfeedforwardinhibition
AT restrepodiego celltypespecificcontrolofbasolateralamygdalaneuronalcircuitsviaentorhinalcortexdrivenfeedforwardinhibition
AT huntsmanmollym celltypespecificcontrolofbasolateralamygdalaneuronalcircuitsviaentorhinalcortexdrivenfeedforwardinhibition