Cargando…

Cell-type-specific regulation of neuronal intrinsic excitability by macroautophagy

The basal ganglia are a group of subcortical nuclei that contribute to action selection and reinforcement learning. The principal neurons of the striatum, spiny projection neurons of the direct (dSPN) and indirect (iSPN) pathways, maintain low intrinsic excitability, requiring convergent excitatory...

Descripción completa

Detalles Bibliográficos
Autores principales: Lieberman, Ori J, Frier, Micah D, McGuirt, Avery F, Griffey, Christopher J, Rafikian, Elizabeth, Yang, Mu, Yamamoto, Ai, Borgkvist, Anders, Santini, Emanuela, Sulzer, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6984822/
https://www.ncbi.nlm.nih.gov/pubmed/31913125
http://dx.doi.org/10.7554/eLife.50843
_version_ 1783491704040456192
author Lieberman, Ori J
Frier, Micah D
McGuirt, Avery F
Griffey, Christopher J
Rafikian, Elizabeth
Yang, Mu
Yamamoto, Ai
Borgkvist, Anders
Santini, Emanuela
Sulzer, David
author_facet Lieberman, Ori J
Frier, Micah D
McGuirt, Avery F
Griffey, Christopher J
Rafikian, Elizabeth
Yang, Mu
Yamamoto, Ai
Borgkvist, Anders
Santini, Emanuela
Sulzer, David
author_sort Lieberman, Ori J
collection PubMed
description The basal ganglia are a group of subcortical nuclei that contribute to action selection and reinforcement learning. The principal neurons of the striatum, spiny projection neurons of the direct (dSPN) and indirect (iSPN) pathways, maintain low intrinsic excitability, requiring convergent excitatory inputs to fire. Here, we examined the role of autophagy in mouse SPN physiology and animal behavior by generating conditional knockouts of Atg7 in either dSPNs or iSPNs. Loss of autophagy in either SPN population led to changes in motor learning but distinct effects on cellular physiology. dSPNs, but not iSPNs, required autophagy for normal dendritic structure and synaptic input. In contrast, iSPNs, but not dSPNs, were intrinsically hyperexcitable due to reduced function of the inwardly rectifying potassium channel, Kir2. These findings define a novel mechanism by which autophagy regulates neuronal activity: control of intrinsic excitability via the regulation of potassium channel function.
format Online
Article
Text
id pubmed-6984822
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-69848222020-01-29 Cell-type-specific regulation of neuronal intrinsic excitability by macroautophagy Lieberman, Ori J Frier, Micah D McGuirt, Avery F Griffey, Christopher J Rafikian, Elizabeth Yang, Mu Yamamoto, Ai Borgkvist, Anders Santini, Emanuela Sulzer, David eLife Cell Biology The basal ganglia are a group of subcortical nuclei that contribute to action selection and reinforcement learning. The principal neurons of the striatum, spiny projection neurons of the direct (dSPN) and indirect (iSPN) pathways, maintain low intrinsic excitability, requiring convergent excitatory inputs to fire. Here, we examined the role of autophagy in mouse SPN physiology and animal behavior by generating conditional knockouts of Atg7 in either dSPNs or iSPNs. Loss of autophagy in either SPN population led to changes in motor learning but distinct effects on cellular physiology. dSPNs, but not iSPNs, required autophagy for normal dendritic structure and synaptic input. In contrast, iSPNs, but not dSPNs, were intrinsically hyperexcitable due to reduced function of the inwardly rectifying potassium channel, Kir2. These findings define a novel mechanism by which autophagy regulates neuronal activity: control of intrinsic excitability via the regulation of potassium channel function. eLife Sciences Publications, Ltd 2020-01-08 /pmc/articles/PMC6984822/ /pubmed/31913125 http://dx.doi.org/10.7554/eLife.50843 Text en © 2020, Lieberman et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Cell Biology
Lieberman, Ori J
Frier, Micah D
McGuirt, Avery F
Griffey, Christopher J
Rafikian, Elizabeth
Yang, Mu
Yamamoto, Ai
Borgkvist, Anders
Santini, Emanuela
Sulzer, David
Cell-type-specific regulation of neuronal intrinsic excitability by macroautophagy
title Cell-type-specific regulation of neuronal intrinsic excitability by macroautophagy
title_full Cell-type-specific regulation of neuronal intrinsic excitability by macroautophagy
title_fullStr Cell-type-specific regulation of neuronal intrinsic excitability by macroautophagy
title_full_unstemmed Cell-type-specific regulation of neuronal intrinsic excitability by macroautophagy
title_short Cell-type-specific regulation of neuronal intrinsic excitability by macroautophagy
title_sort cell-type-specific regulation of neuronal intrinsic excitability by macroautophagy
topic Cell Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6984822/
https://www.ncbi.nlm.nih.gov/pubmed/31913125
http://dx.doi.org/10.7554/eLife.50843
work_keys_str_mv AT liebermanorij celltypespecificregulationofneuronalintrinsicexcitabilitybymacroautophagy
AT friermicahd celltypespecificregulationofneuronalintrinsicexcitabilitybymacroautophagy
AT mcguirtaveryf celltypespecificregulationofneuronalintrinsicexcitabilitybymacroautophagy
AT griffeychristopherj celltypespecificregulationofneuronalintrinsicexcitabilitybymacroautophagy
AT rafikianelizabeth celltypespecificregulationofneuronalintrinsicexcitabilitybymacroautophagy
AT yangmu celltypespecificregulationofneuronalintrinsicexcitabilitybymacroautophagy
AT yamamotoai celltypespecificregulationofneuronalintrinsicexcitabilitybymacroautophagy
AT borgkvistanders celltypespecificregulationofneuronalintrinsicexcitabilitybymacroautophagy
AT santiniemanuela celltypespecificregulationofneuronalintrinsicexcitabilitybymacroautophagy
AT sulzerdavid celltypespecificregulationofneuronalintrinsicexcitabilitybymacroautophagy