Cargando…
Microscaled proteogenomic methods for precision oncology
Cancer proteogenomics promises new insights into cancer biology and treatment efficacy by integrating genomics, transcriptomics and protein profiling including modifications by mass spectrometry (MS). A critical limitation is sample input requirements that exceed many sources of clinically important...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6985126/ https://www.ncbi.nlm.nih.gov/pubmed/31988290 http://dx.doi.org/10.1038/s41467-020-14381-2 |
_version_ | 1783491754804117504 |
---|---|
author | Satpathy, Shankha Jaehnig, Eric J. Krug, Karsten Kim, Beom-Jun Saltzman, Alexander B. Chan, Doug W. Holloway, Kimberly R. Anurag, Meenakshi Huang, Chen Singh, Purba Gao, Ari Namai, Noel Dou, Yongchao Wen, Bo Vasaikar, Suhas V. Mutch, David Watson, Mark A. Ma, Cynthia Ademuyiwa, Foluso O. Rimawi, Mothaffar F. Schiff, Rachel Hoog, Jeremy Jacobs, Samuel Malovannaya, Anna Hyslop, Terry Clauser, Karl R. Mani, D. R. Perou, Charles M. Miles, George Zhang, Bing Gillette, Michael A. Carr, Steven A. Ellis, Matthew J. |
author_facet | Satpathy, Shankha Jaehnig, Eric J. Krug, Karsten Kim, Beom-Jun Saltzman, Alexander B. Chan, Doug W. Holloway, Kimberly R. Anurag, Meenakshi Huang, Chen Singh, Purba Gao, Ari Namai, Noel Dou, Yongchao Wen, Bo Vasaikar, Suhas V. Mutch, David Watson, Mark A. Ma, Cynthia Ademuyiwa, Foluso O. Rimawi, Mothaffar F. Schiff, Rachel Hoog, Jeremy Jacobs, Samuel Malovannaya, Anna Hyslop, Terry Clauser, Karl R. Mani, D. R. Perou, Charles M. Miles, George Zhang, Bing Gillette, Michael A. Carr, Steven A. Ellis, Matthew J. |
author_sort | Satpathy, Shankha |
collection | PubMed |
description | Cancer proteogenomics promises new insights into cancer biology and treatment efficacy by integrating genomics, transcriptomics and protein profiling including modifications by mass spectrometry (MS). A critical limitation is sample input requirements that exceed many sources of clinically important material. Here we report a proteogenomics approach for core biopsies using tissue-sparing specimen processing and microscaled proteomics. As a demonstration, we analyze core needle biopsies from ERBB2 positive breast cancers before and 48–72 h after initiating neoadjuvant trastuzumab-based chemotherapy. We show greater suppression of ERBB2 protein and both ERBB2 and mTOR target phosphosite levels in cases associated with pathological complete response, and identify potential causes of treatment resistance including the absence of ERBB2 amplification, insufficient ERBB2 activity for therapeutic sensitivity despite ERBB2 amplification, and candidate resistance mechanisms including androgen receptor signaling, mucin overexpression and an inactive immune microenvironment. The clinical utility and discovery potential of proteogenomics at biopsy-scale warrants further investigation. |
format | Online Article Text |
id | pubmed-6985126 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-69851262020-01-29 Microscaled proteogenomic methods for precision oncology Satpathy, Shankha Jaehnig, Eric J. Krug, Karsten Kim, Beom-Jun Saltzman, Alexander B. Chan, Doug W. Holloway, Kimberly R. Anurag, Meenakshi Huang, Chen Singh, Purba Gao, Ari Namai, Noel Dou, Yongchao Wen, Bo Vasaikar, Suhas V. Mutch, David Watson, Mark A. Ma, Cynthia Ademuyiwa, Foluso O. Rimawi, Mothaffar F. Schiff, Rachel Hoog, Jeremy Jacobs, Samuel Malovannaya, Anna Hyslop, Terry Clauser, Karl R. Mani, D. R. Perou, Charles M. Miles, George Zhang, Bing Gillette, Michael A. Carr, Steven A. Ellis, Matthew J. Nat Commun Article Cancer proteogenomics promises new insights into cancer biology and treatment efficacy by integrating genomics, transcriptomics and protein profiling including modifications by mass spectrometry (MS). A critical limitation is sample input requirements that exceed many sources of clinically important material. Here we report a proteogenomics approach for core biopsies using tissue-sparing specimen processing and microscaled proteomics. As a demonstration, we analyze core needle biopsies from ERBB2 positive breast cancers before and 48–72 h after initiating neoadjuvant trastuzumab-based chemotherapy. We show greater suppression of ERBB2 protein and both ERBB2 and mTOR target phosphosite levels in cases associated with pathological complete response, and identify potential causes of treatment resistance including the absence of ERBB2 amplification, insufficient ERBB2 activity for therapeutic sensitivity despite ERBB2 amplification, and candidate resistance mechanisms including androgen receptor signaling, mucin overexpression and an inactive immune microenvironment. The clinical utility and discovery potential of proteogenomics at biopsy-scale warrants further investigation. Nature Publishing Group UK 2020-01-27 /pmc/articles/PMC6985126/ /pubmed/31988290 http://dx.doi.org/10.1038/s41467-020-14381-2 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Satpathy, Shankha Jaehnig, Eric J. Krug, Karsten Kim, Beom-Jun Saltzman, Alexander B. Chan, Doug W. Holloway, Kimberly R. Anurag, Meenakshi Huang, Chen Singh, Purba Gao, Ari Namai, Noel Dou, Yongchao Wen, Bo Vasaikar, Suhas V. Mutch, David Watson, Mark A. Ma, Cynthia Ademuyiwa, Foluso O. Rimawi, Mothaffar F. Schiff, Rachel Hoog, Jeremy Jacobs, Samuel Malovannaya, Anna Hyslop, Terry Clauser, Karl R. Mani, D. R. Perou, Charles M. Miles, George Zhang, Bing Gillette, Michael A. Carr, Steven A. Ellis, Matthew J. Microscaled proteogenomic methods for precision oncology |
title | Microscaled proteogenomic methods for precision oncology |
title_full | Microscaled proteogenomic methods for precision oncology |
title_fullStr | Microscaled proteogenomic methods for precision oncology |
title_full_unstemmed | Microscaled proteogenomic methods for precision oncology |
title_short | Microscaled proteogenomic methods for precision oncology |
title_sort | microscaled proteogenomic methods for precision oncology |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6985126/ https://www.ncbi.nlm.nih.gov/pubmed/31988290 http://dx.doi.org/10.1038/s41467-020-14381-2 |
work_keys_str_mv | AT satpathyshankha microscaledproteogenomicmethodsforprecisiononcology AT jaehnigericj microscaledproteogenomicmethodsforprecisiononcology AT krugkarsten microscaledproteogenomicmethodsforprecisiononcology AT kimbeomjun microscaledproteogenomicmethodsforprecisiononcology AT saltzmanalexanderb microscaledproteogenomicmethodsforprecisiononcology AT chandougw microscaledproteogenomicmethodsforprecisiononcology AT hollowaykimberlyr microscaledproteogenomicmethodsforprecisiononcology AT anuragmeenakshi microscaledproteogenomicmethodsforprecisiononcology AT huangchen microscaledproteogenomicmethodsforprecisiononcology AT singhpurba microscaledproteogenomicmethodsforprecisiononcology AT gaoari microscaledproteogenomicmethodsforprecisiononcology AT namainoel microscaledproteogenomicmethodsforprecisiononcology AT douyongchao microscaledproteogenomicmethodsforprecisiononcology AT wenbo microscaledproteogenomicmethodsforprecisiononcology AT vasaikarsuhasv microscaledproteogenomicmethodsforprecisiononcology AT mutchdavid microscaledproteogenomicmethodsforprecisiononcology AT watsonmarka microscaledproteogenomicmethodsforprecisiononcology AT macynthia microscaledproteogenomicmethodsforprecisiononcology AT ademuyiwafolusoo microscaledproteogenomicmethodsforprecisiononcology AT rimawimothaffarf microscaledproteogenomicmethodsforprecisiononcology AT schiffrachel microscaledproteogenomicmethodsforprecisiononcology AT hoogjeremy microscaledproteogenomicmethodsforprecisiononcology AT jacobssamuel microscaledproteogenomicmethodsforprecisiononcology AT malovannayaanna microscaledproteogenomicmethodsforprecisiononcology AT hyslopterry microscaledproteogenomicmethodsforprecisiononcology AT clauserkarlr microscaledproteogenomicmethodsforprecisiononcology AT manidr microscaledproteogenomicmethodsforprecisiononcology AT peroucharlesm microscaledproteogenomicmethodsforprecisiononcology AT milesgeorge microscaledproteogenomicmethodsforprecisiononcology AT zhangbing microscaledproteogenomicmethodsforprecisiononcology AT gillettemichaela microscaledproteogenomicmethodsforprecisiononcology AT carrstevena microscaledproteogenomicmethodsforprecisiononcology AT ellismatthewj microscaledproteogenomicmethodsforprecisiononcology |