Cargando…
Functional Near-Infrared Spectroscopy to Study Cerebral Hemodynamics in Older Adults During Cognitive and Motor Tasks: A Review
The integrity of the frontal areas of the brain, specifically the prefrontal cortex, are critical to preserve cognition and mobility in late life. Prefrontal cortex regions are involved in executive functions and gait control and have been related to the performance of dual-tasks. Dual-task performa...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6985209/ https://www.ncbi.nlm.nih.gov/pubmed/32038224 http://dx.doi.org/10.3389/fnagi.2019.00367 |
_version_ | 1783491772493594624 |
---|---|
author | Udina, Cristina Avtzi, Stella Durduran, Turgut Holtzer, Roee Rosso, Andrea L. Castellano-Tejedor, Carmina Perez, Laura-Monica Soto-Bagaria, Luis Inzitari, Marco |
author_facet | Udina, Cristina Avtzi, Stella Durduran, Turgut Holtzer, Roee Rosso, Andrea L. Castellano-Tejedor, Carmina Perez, Laura-Monica Soto-Bagaria, Luis Inzitari, Marco |
author_sort | Udina, Cristina |
collection | PubMed |
description | The integrity of the frontal areas of the brain, specifically the prefrontal cortex, are critical to preserve cognition and mobility in late life. Prefrontal cortex regions are involved in executive functions and gait control and have been related to the performance of dual-tasks. Dual-task performance assessment may help identify older adults at risk of negative health outcomes. As an alternative to neuroimaging techniques that do not allow assessment during actual motion, functional Near-Infrared Spectroscopy (fNIRS) is a non-invasive technique that can assess neural activation through the measurement of cortical oxygenated and deoxygenated hemoglobin levels, while the person is performing a motor task in a natural environment as well as during cognitive tasks. The aim of this review was to describe the use of fNIRS to study frontal lobe hemodynamics during cognitive, motor and dual-tasks in older adults. From the 46 included publications, 20 studies used only cognitive tasks, three studies used motor tasks and 23 used dual-tasks. Our findings suggest that fNIRS detects changes in frontal activation in older adults (cognitively healthy and mild cognitive impairment), especially while performing cognitive and dual-tasks. In both the comparison between older and younger adults, and in people with different neurological conditions, compared to healthier controls, the prefrontal cortex seems to experience a higher activation, which could be interpreted in the context of proposed neural inefficiency and limited capacity models. Further research is needed to establish standardized fNIRS protocols, study the cerebral hemodynamic in different neurological and systemic conditions that might influence cortical activation and explore its role in predicting incident health outcomes such as dementia. |
format | Online Article Text |
id | pubmed-6985209 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-69852092020-02-07 Functional Near-Infrared Spectroscopy to Study Cerebral Hemodynamics in Older Adults During Cognitive and Motor Tasks: A Review Udina, Cristina Avtzi, Stella Durduran, Turgut Holtzer, Roee Rosso, Andrea L. Castellano-Tejedor, Carmina Perez, Laura-Monica Soto-Bagaria, Luis Inzitari, Marco Front Aging Neurosci Neuroscience The integrity of the frontal areas of the brain, specifically the prefrontal cortex, are critical to preserve cognition and mobility in late life. Prefrontal cortex regions are involved in executive functions and gait control and have been related to the performance of dual-tasks. Dual-task performance assessment may help identify older adults at risk of negative health outcomes. As an alternative to neuroimaging techniques that do not allow assessment during actual motion, functional Near-Infrared Spectroscopy (fNIRS) is a non-invasive technique that can assess neural activation through the measurement of cortical oxygenated and deoxygenated hemoglobin levels, while the person is performing a motor task in a natural environment as well as during cognitive tasks. The aim of this review was to describe the use of fNIRS to study frontal lobe hemodynamics during cognitive, motor and dual-tasks in older adults. From the 46 included publications, 20 studies used only cognitive tasks, three studies used motor tasks and 23 used dual-tasks. Our findings suggest that fNIRS detects changes in frontal activation in older adults (cognitively healthy and mild cognitive impairment), especially while performing cognitive and dual-tasks. In both the comparison between older and younger adults, and in people with different neurological conditions, compared to healthier controls, the prefrontal cortex seems to experience a higher activation, which could be interpreted in the context of proposed neural inefficiency and limited capacity models. Further research is needed to establish standardized fNIRS protocols, study the cerebral hemodynamic in different neurological and systemic conditions that might influence cortical activation and explore its role in predicting incident health outcomes such as dementia. Frontiers Media S.A. 2020-01-21 /pmc/articles/PMC6985209/ /pubmed/32038224 http://dx.doi.org/10.3389/fnagi.2019.00367 Text en Copyright © 2020 Udina, Avtzi, Durduran, Holtzer, Rosso, Castellano-Tejedor, Perez, Soto-Bagaria and Inzitari. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Udina, Cristina Avtzi, Stella Durduran, Turgut Holtzer, Roee Rosso, Andrea L. Castellano-Tejedor, Carmina Perez, Laura-Monica Soto-Bagaria, Luis Inzitari, Marco Functional Near-Infrared Spectroscopy to Study Cerebral Hemodynamics in Older Adults During Cognitive and Motor Tasks: A Review |
title | Functional Near-Infrared Spectroscopy to Study Cerebral Hemodynamics in Older Adults During Cognitive and Motor Tasks: A Review |
title_full | Functional Near-Infrared Spectroscopy to Study Cerebral Hemodynamics in Older Adults During Cognitive and Motor Tasks: A Review |
title_fullStr | Functional Near-Infrared Spectroscopy to Study Cerebral Hemodynamics in Older Adults During Cognitive and Motor Tasks: A Review |
title_full_unstemmed | Functional Near-Infrared Spectroscopy to Study Cerebral Hemodynamics in Older Adults During Cognitive and Motor Tasks: A Review |
title_short | Functional Near-Infrared Spectroscopy to Study Cerebral Hemodynamics in Older Adults During Cognitive and Motor Tasks: A Review |
title_sort | functional near-infrared spectroscopy to study cerebral hemodynamics in older adults during cognitive and motor tasks: a review |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6985209/ https://www.ncbi.nlm.nih.gov/pubmed/32038224 http://dx.doi.org/10.3389/fnagi.2019.00367 |
work_keys_str_mv | AT udinacristina functionalnearinfraredspectroscopytostudycerebralhemodynamicsinolderadultsduringcognitiveandmotortasksareview AT avtzistella functionalnearinfraredspectroscopytostudycerebralhemodynamicsinolderadultsduringcognitiveandmotortasksareview AT durduranturgut functionalnearinfraredspectroscopytostudycerebralhemodynamicsinolderadultsduringcognitiveandmotortasksareview AT holtzerroee functionalnearinfraredspectroscopytostudycerebralhemodynamicsinolderadultsduringcognitiveandmotortasksareview AT rossoandreal functionalnearinfraredspectroscopytostudycerebralhemodynamicsinolderadultsduringcognitiveandmotortasksareview AT castellanotejedorcarmina functionalnearinfraredspectroscopytostudycerebralhemodynamicsinolderadultsduringcognitiveandmotortasksareview AT perezlauramonica functionalnearinfraredspectroscopytostudycerebralhemodynamicsinolderadultsduringcognitiveandmotortasksareview AT sotobagarialuis functionalnearinfraredspectroscopytostudycerebralhemodynamicsinolderadultsduringcognitiveandmotortasksareview AT inzitarimarco functionalnearinfraredspectroscopytostudycerebralhemodynamicsinolderadultsduringcognitiveandmotortasksareview |