Cargando…
Stabilized Reconstruction of Signaling Networks from Single-Cell Cue-Response Data
Inferring cell-signaling networks from high-throughput data is a challenging problem in systems biology. Recent advances in cytometric technology enable us to measure the abundance of a large number of proteins at the single-cell level across time. Traditional network reconstruction approaches usual...
Autores principales: | Kumar, Sunil, Lun, Xiao-Kang, Bodenmiller, Bernd, Rodríguez Martínez, María, Koeppl, Heinz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6985232/ https://www.ncbi.nlm.nih.gov/pubmed/31988302 http://dx.doi.org/10.1038/s41598-019-56444-5 |
Ejemplares similares
-
Profiling Cell Signaling Networks at Single-cell Resolution
por: Lun, Xiao-Kang, et al.
Publicado: (2020) -
Graph reconstruction using covariance-based methods
por: Sulaimanov, Nurgazy, et al.
Publicado: (2016) -
CellCycleTRACER accounts for cell cycle and volume in mass cytometry data
por: Rapsomaniki, Maria Anna, et al.
Publicado: (2018) -
Influence of node abundance on signaling network state and dynamics analyzed by mass cytometry
por: Lun, Xiao-Kang, et al.
Publicado: (2017) -
Mechanistic Model of Signaling Dynamics Across an Epithelial Mesenchymal Transition
por: Wade, James D., et al.
Publicado: (2020)