Phytoremediation performance of floating treatment wetlands with pelletized mine water sludge for synthetic greywater treatment
PURPOSE: Buckets containing floating reed (Phragmites australis) simulated floating treatment wetlands (FTWs) and were used to improve the remediation performance of synthetic greywater (SGW). The aim of the study was to investigate the behaviour of FTWs for treatment of key contaminants within arti...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6985343/ https://www.ncbi.nlm.nih.gov/pubmed/32030136 http://dx.doi.org/10.1007/s40201-019-00372-z |
_version_ | 1783491794669928448 |
---|---|
author | Abed, Suhail N. Almuktar, Suhad A. Scholz, Miklas |
author_facet | Abed, Suhail N. Almuktar, Suhad A. Scholz, Miklas |
author_sort | Abed, Suhail N. |
collection | PubMed |
description | PURPOSE: Buckets containing floating reed (Phragmites australis) simulated floating treatment wetlands (FTWs) and were used to improve the remediation performance of synthetic greywater (SGW). The aim of the study was to investigate the behaviour of FTWs for treatment of key contaminants within artificial greywater. METHODS: Pelletized ochre based on acid mine water sludge was introduced to selected FTWs, because of its capability in sequestration phosphorus and other trace elements. The impact of the following four operational variables were tested in the experimental set–ups of the FTWs (four replicates each): pollutant strength (high– (HC) and low– (LC) concentrations), treatment time (2– or 7–days of hydraulic retention time (HRT)), presence or absence of macrophytes (P. australis) and cement–ochre pellets. RESULTS: The results showed that 5 − day biochemical oxygen demand (BOD) and chemical oxygen demands (COD) were significantly (p < 0.05) reduced in all wetlands. Nitrate–nitrogen (NO(3)–N) concentrations were significantly (p < 0.05) higher, and those measurements for PO(4)–P were significantly (p < 0.05) lower than the corresponding ones determined for the influent. The existence of ochre pellets with P. australis significantly (p < 0.05) decreased B, Cd, Cr, Cu, Mg, Ni and Zn concentrations, but increased Al, Ca, Fe and K concentrations in the effluent, with the exception of sodium (Na). CONCLUSIONS: The FTW performances can be improved by utilising ochre–cement pellets to increase the pH of greywater. The presence of P. australis acts as a buffer to neutralise the pH of SGW. Rhizomes and biofilms mitigate increases in turbidity, TSS and colour values. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s40201-019-00372-z) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6985343 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-69853432020-02-06 Phytoremediation performance of floating treatment wetlands with pelletized mine water sludge for synthetic greywater treatment Abed, Suhail N. Almuktar, Suhad A. Scholz, Miklas J Environ Health Sci Eng Research Article PURPOSE: Buckets containing floating reed (Phragmites australis) simulated floating treatment wetlands (FTWs) and were used to improve the remediation performance of synthetic greywater (SGW). The aim of the study was to investigate the behaviour of FTWs for treatment of key contaminants within artificial greywater. METHODS: Pelletized ochre based on acid mine water sludge was introduced to selected FTWs, because of its capability in sequestration phosphorus and other trace elements. The impact of the following four operational variables were tested in the experimental set–ups of the FTWs (four replicates each): pollutant strength (high– (HC) and low– (LC) concentrations), treatment time (2– or 7–days of hydraulic retention time (HRT)), presence or absence of macrophytes (P. australis) and cement–ochre pellets. RESULTS: The results showed that 5 − day biochemical oxygen demand (BOD) and chemical oxygen demands (COD) were significantly (p < 0.05) reduced in all wetlands. Nitrate–nitrogen (NO(3)–N) concentrations were significantly (p < 0.05) higher, and those measurements for PO(4)–P were significantly (p < 0.05) lower than the corresponding ones determined for the influent. The existence of ochre pellets with P. australis significantly (p < 0.05) decreased B, Cd, Cr, Cu, Mg, Ni and Zn concentrations, but increased Al, Ca, Fe and K concentrations in the effluent, with the exception of sodium (Na). CONCLUSIONS: The FTW performances can be improved by utilising ochre–cement pellets to increase the pH of greywater. The presence of P. australis acts as a buffer to neutralise the pH of SGW. Rhizomes and biofilms mitigate increases in turbidity, TSS and colour values. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s40201-019-00372-z) contains supplementary material, which is available to authorized users. Springer International Publishing 2019-04-18 /pmc/articles/PMC6985343/ /pubmed/32030136 http://dx.doi.org/10.1007/s40201-019-00372-z Text en © The Author(s) 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Research Article Abed, Suhail N. Almuktar, Suhad A. Scholz, Miklas Phytoremediation performance of floating treatment wetlands with pelletized mine water sludge for synthetic greywater treatment |
title | Phytoremediation performance of floating treatment wetlands with pelletized mine water sludge for synthetic greywater treatment |
title_full | Phytoremediation performance of floating treatment wetlands with pelletized mine water sludge for synthetic greywater treatment |
title_fullStr | Phytoremediation performance of floating treatment wetlands with pelletized mine water sludge for synthetic greywater treatment |
title_full_unstemmed | Phytoremediation performance of floating treatment wetlands with pelletized mine water sludge for synthetic greywater treatment |
title_short | Phytoremediation performance of floating treatment wetlands with pelletized mine water sludge for synthetic greywater treatment |
title_sort | phytoremediation performance of floating treatment wetlands with pelletized mine water sludge for synthetic greywater treatment |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6985343/ https://www.ncbi.nlm.nih.gov/pubmed/32030136 http://dx.doi.org/10.1007/s40201-019-00372-z |
work_keys_str_mv | AT abedsuhailn phytoremediationperformanceoffloatingtreatmentwetlandswithpelletizedminewatersludgeforsyntheticgreywatertreatment AT almuktarsuhada phytoremediationperformanceoffloatingtreatmentwetlandswithpelletizedminewatersludgeforsyntheticgreywatertreatment AT scholzmiklas phytoremediationperformanceoffloatingtreatmentwetlandswithpelletizedminewatersludgeforsyntheticgreywatertreatment |