Cargando…
Quantifying Gene Essentiality Based on the Context of Cellular Components
Different genes have their protein products localized in various subcellular compartments. The diversity in protein localization may serve as a gene characteristic, revealing gene essentiality from a subcellular perspective. To measure this diversity, we introduced a Subcellular Diversity Index (SDI...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6985572/ https://www.ncbi.nlm.nih.gov/pubmed/32038710 http://dx.doi.org/10.3389/fgene.2019.01342 |
_version_ | 1783491831628038144 |
---|---|
author | Jia, Kaiwen Zhou, Yuan Cui, Qinghua |
author_facet | Jia, Kaiwen Zhou, Yuan Cui, Qinghua |
author_sort | Jia, Kaiwen |
collection | PubMed |
description | Different genes have their protein products localized in various subcellular compartments. The diversity in protein localization may serve as a gene characteristic, revealing gene essentiality from a subcellular perspective. To measure this diversity, we introduced a Subcellular Diversity Index (SDI) based on the Gene Ontology-Cellular Component Ontology (GO-CCO) and a semantic similarity measure of GO terms. Analyses revealed that SDI of human genes was well correlated with some known measures of gene essentiality, including protein–protein interaction (PPI) network topology measurements, dN/dS ratio, homologous gene number, expression level and tissue specificity. In addition, SDI had a good performance in predicting human essential genes (AUC = 0.702) and drug target genes (AUC = 0.704), and drug targets with higher SDI scores tended to cause more side-effects. The results suggest that SDI could be used to identify novel drug targets and to guide the filtering of drug targets with fewer potential side effects. Finally, we developed a user-friendly online database for querying SDI score for genes across eight species, and the predicted probabilities of human drug target based on SDI. The online database of SDI is available at: http://www.cuilab.cn/sdi. |
format | Online Article Text |
id | pubmed-6985572 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-69855722020-02-07 Quantifying Gene Essentiality Based on the Context of Cellular Components Jia, Kaiwen Zhou, Yuan Cui, Qinghua Front Genet Genetics Different genes have their protein products localized in various subcellular compartments. The diversity in protein localization may serve as a gene characteristic, revealing gene essentiality from a subcellular perspective. To measure this diversity, we introduced a Subcellular Diversity Index (SDI) based on the Gene Ontology-Cellular Component Ontology (GO-CCO) and a semantic similarity measure of GO terms. Analyses revealed that SDI of human genes was well correlated with some known measures of gene essentiality, including protein–protein interaction (PPI) network topology measurements, dN/dS ratio, homologous gene number, expression level and tissue specificity. In addition, SDI had a good performance in predicting human essential genes (AUC = 0.702) and drug target genes (AUC = 0.704), and drug targets with higher SDI scores tended to cause more side-effects. The results suggest that SDI could be used to identify novel drug targets and to guide the filtering of drug targets with fewer potential side effects. Finally, we developed a user-friendly online database for querying SDI score for genes across eight species, and the predicted probabilities of human drug target based on SDI. The online database of SDI is available at: http://www.cuilab.cn/sdi. Frontiers Media S.A. 2020-01-21 /pmc/articles/PMC6985572/ /pubmed/32038710 http://dx.doi.org/10.3389/fgene.2019.01342 Text en Copyright © 2020 Jia, Zhou and Cui http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Genetics Jia, Kaiwen Zhou, Yuan Cui, Qinghua Quantifying Gene Essentiality Based on the Context of Cellular Components |
title | Quantifying Gene Essentiality Based on the Context of Cellular Components |
title_full | Quantifying Gene Essentiality Based on the Context of Cellular Components |
title_fullStr | Quantifying Gene Essentiality Based on the Context of Cellular Components |
title_full_unstemmed | Quantifying Gene Essentiality Based on the Context of Cellular Components |
title_short | Quantifying Gene Essentiality Based on the Context of Cellular Components |
title_sort | quantifying gene essentiality based on the context of cellular components |
topic | Genetics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6985572/ https://www.ncbi.nlm.nih.gov/pubmed/32038710 http://dx.doi.org/10.3389/fgene.2019.01342 |
work_keys_str_mv | AT jiakaiwen quantifyinggeneessentialitybasedonthecontextofcellularcomponents AT zhouyuan quantifyinggeneessentialitybasedonthecontextofcellularcomponents AT cuiqinghua quantifyinggeneessentialitybasedonthecontextofcellularcomponents |