Cargando…
The mitochondrial HSP90 paralog TRAP1 forms an OXPHOS-regulated tetramer and is involved in mitochondrial metabolic homeostasis
BACKGROUND: The molecular chaperone TRAP1, the mitochondrial isoform of cytosolic HSP90, remains poorly understood with respect to its pivotal role in the regulation of mitochondrial metabolism. Most studies have found it to be an inhibitor of mitochondrial oxidative phosphorylation (OXPHOS) and an...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6986101/ https://www.ncbi.nlm.nih.gov/pubmed/31987035 http://dx.doi.org/10.1186/s12915-020-0740-7 |
_version_ | 1783491916332007424 |
---|---|
author | Joshi, Abhinav Dai, Li Liu, Yanxin Lee, Jungsoon Ghahhari, Nastaran Mohammadi Segala, Gregory Beebe, Kristin Jenkins, Lisa M. Lyons, Gaelyn C. Bernasconi, Lilia Tsai, Francis T. F. Agard, David A. Neckers, Len Picard, Didier |
author_facet | Joshi, Abhinav Dai, Li Liu, Yanxin Lee, Jungsoon Ghahhari, Nastaran Mohammadi Segala, Gregory Beebe, Kristin Jenkins, Lisa M. Lyons, Gaelyn C. Bernasconi, Lilia Tsai, Francis T. F. Agard, David A. Neckers, Len Picard, Didier |
author_sort | Joshi, Abhinav |
collection | PubMed |
description | BACKGROUND: The molecular chaperone TRAP1, the mitochondrial isoform of cytosolic HSP90, remains poorly understood with respect to its pivotal role in the regulation of mitochondrial metabolism. Most studies have found it to be an inhibitor of mitochondrial oxidative phosphorylation (OXPHOS) and an inducer of the Warburg phenotype of cancer cells. However, others have reported the opposite, and there is no consensus on the relevant TRAP1 interactors. This calls for a more comprehensive analysis of the TRAP1 interactome and of how TRAP1 and mitochondrial metabolism mutually affect each other. RESULTS: We show that the disruption of the gene for TRAP1 in a panel of cell lines dysregulates OXPHOS by a metabolic rewiring that induces the anaplerotic utilization of glutamine metabolism to replenish TCA cycle intermediates. Restoration of wild-type levels of OXPHOS requires full-length TRAP1. Whereas the TRAP1 ATPase activity is dispensable for this function, it modulates the interactions of TRAP1 with various mitochondrial proteins. Quantitatively by far, the major interactors of TRAP1 are the mitochondrial chaperones mtHSP70 and HSP60. However, we find that the most stable stoichiometric TRAP1 complex is a TRAP1 tetramer, whose levels change in response to both a decline and an increase in OXPHOS. CONCLUSIONS: Our work provides a roadmap for further investigations of how TRAP1 and its interactors such as the ATP synthase regulate cellular energy metabolism. Our results highlight that TRAP1 function in metabolism and cancer cannot be understood without a focus on TRAP1 tetramers as potentially the most relevant functional entity. |
format | Online Article Text |
id | pubmed-6986101 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-69861012020-01-30 The mitochondrial HSP90 paralog TRAP1 forms an OXPHOS-regulated tetramer and is involved in mitochondrial metabolic homeostasis Joshi, Abhinav Dai, Li Liu, Yanxin Lee, Jungsoon Ghahhari, Nastaran Mohammadi Segala, Gregory Beebe, Kristin Jenkins, Lisa M. Lyons, Gaelyn C. Bernasconi, Lilia Tsai, Francis T. F. Agard, David A. Neckers, Len Picard, Didier BMC Biol Research Article BACKGROUND: The molecular chaperone TRAP1, the mitochondrial isoform of cytosolic HSP90, remains poorly understood with respect to its pivotal role in the regulation of mitochondrial metabolism. Most studies have found it to be an inhibitor of mitochondrial oxidative phosphorylation (OXPHOS) and an inducer of the Warburg phenotype of cancer cells. However, others have reported the opposite, and there is no consensus on the relevant TRAP1 interactors. This calls for a more comprehensive analysis of the TRAP1 interactome and of how TRAP1 and mitochondrial metabolism mutually affect each other. RESULTS: We show that the disruption of the gene for TRAP1 in a panel of cell lines dysregulates OXPHOS by a metabolic rewiring that induces the anaplerotic utilization of glutamine metabolism to replenish TCA cycle intermediates. Restoration of wild-type levels of OXPHOS requires full-length TRAP1. Whereas the TRAP1 ATPase activity is dispensable for this function, it modulates the interactions of TRAP1 with various mitochondrial proteins. Quantitatively by far, the major interactors of TRAP1 are the mitochondrial chaperones mtHSP70 and HSP60. However, we find that the most stable stoichiometric TRAP1 complex is a TRAP1 tetramer, whose levels change in response to both a decline and an increase in OXPHOS. CONCLUSIONS: Our work provides a roadmap for further investigations of how TRAP1 and its interactors such as the ATP synthase regulate cellular energy metabolism. Our results highlight that TRAP1 function in metabolism and cancer cannot be understood without a focus on TRAP1 tetramers as potentially the most relevant functional entity. BioMed Central 2020-01-27 /pmc/articles/PMC6986101/ /pubmed/31987035 http://dx.doi.org/10.1186/s12915-020-0740-7 Text en © The Author(s). 2020 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Joshi, Abhinav Dai, Li Liu, Yanxin Lee, Jungsoon Ghahhari, Nastaran Mohammadi Segala, Gregory Beebe, Kristin Jenkins, Lisa M. Lyons, Gaelyn C. Bernasconi, Lilia Tsai, Francis T. F. Agard, David A. Neckers, Len Picard, Didier The mitochondrial HSP90 paralog TRAP1 forms an OXPHOS-regulated tetramer and is involved in mitochondrial metabolic homeostasis |
title | The mitochondrial HSP90 paralog TRAP1 forms an OXPHOS-regulated tetramer and is involved in mitochondrial metabolic homeostasis |
title_full | The mitochondrial HSP90 paralog TRAP1 forms an OXPHOS-regulated tetramer and is involved in mitochondrial metabolic homeostasis |
title_fullStr | The mitochondrial HSP90 paralog TRAP1 forms an OXPHOS-regulated tetramer and is involved in mitochondrial metabolic homeostasis |
title_full_unstemmed | The mitochondrial HSP90 paralog TRAP1 forms an OXPHOS-regulated tetramer and is involved in mitochondrial metabolic homeostasis |
title_short | The mitochondrial HSP90 paralog TRAP1 forms an OXPHOS-regulated tetramer and is involved in mitochondrial metabolic homeostasis |
title_sort | mitochondrial hsp90 paralog trap1 forms an oxphos-regulated tetramer and is involved in mitochondrial metabolic homeostasis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6986101/ https://www.ncbi.nlm.nih.gov/pubmed/31987035 http://dx.doi.org/10.1186/s12915-020-0740-7 |
work_keys_str_mv | AT joshiabhinav themitochondrialhsp90paralogtrap1formsanoxphosregulatedtetramerandisinvolvedinmitochondrialmetabolichomeostasis AT daili themitochondrialhsp90paralogtrap1formsanoxphosregulatedtetramerandisinvolvedinmitochondrialmetabolichomeostasis AT liuyanxin themitochondrialhsp90paralogtrap1formsanoxphosregulatedtetramerandisinvolvedinmitochondrialmetabolichomeostasis AT leejungsoon themitochondrialhsp90paralogtrap1formsanoxphosregulatedtetramerandisinvolvedinmitochondrialmetabolichomeostasis AT ghahharinastaranmohammadi themitochondrialhsp90paralogtrap1formsanoxphosregulatedtetramerandisinvolvedinmitochondrialmetabolichomeostasis AT segalagregory themitochondrialhsp90paralogtrap1formsanoxphosregulatedtetramerandisinvolvedinmitochondrialmetabolichomeostasis AT beebekristin themitochondrialhsp90paralogtrap1formsanoxphosregulatedtetramerandisinvolvedinmitochondrialmetabolichomeostasis AT jenkinslisam themitochondrialhsp90paralogtrap1formsanoxphosregulatedtetramerandisinvolvedinmitochondrialmetabolichomeostasis AT lyonsgaelync themitochondrialhsp90paralogtrap1formsanoxphosregulatedtetramerandisinvolvedinmitochondrialmetabolichomeostasis AT bernasconililia themitochondrialhsp90paralogtrap1formsanoxphosregulatedtetramerandisinvolvedinmitochondrialmetabolichomeostasis AT tsaifrancistf themitochondrialhsp90paralogtrap1formsanoxphosregulatedtetramerandisinvolvedinmitochondrialmetabolichomeostasis AT agarddavida themitochondrialhsp90paralogtrap1formsanoxphosregulatedtetramerandisinvolvedinmitochondrialmetabolichomeostasis AT neckerslen themitochondrialhsp90paralogtrap1formsanoxphosregulatedtetramerandisinvolvedinmitochondrialmetabolichomeostasis AT picarddidier themitochondrialhsp90paralogtrap1formsanoxphosregulatedtetramerandisinvolvedinmitochondrialmetabolichomeostasis AT joshiabhinav mitochondrialhsp90paralogtrap1formsanoxphosregulatedtetramerandisinvolvedinmitochondrialmetabolichomeostasis AT daili mitochondrialhsp90paralogtrap1formsanoxphosregulatedtetramerandisinvolvedinmitochondrialmetabolichomeostasis AT liuyanxin mitochondrialhsp90paralogtrap1formsanoxphosregulatedtetramerandisinvolvedinmitochondrialmetabolichomeostasis AT leejungsoon mitochondrialhsp90paralogtrap1formsanoxphosregulatedtetramerandisinvolvedinmitochondrialmetabolichomeostasis AT ghahharinastaranmohammadi mitochondrialhsp90paralogtrap1formsanoxphosregulatedtetramerandisinvolvedinmitochondrialmetabolichomeostasis AT segalagregory mitochondrialhsp90paralogtrap1formsanoxphosregulatedtetramerandisinvolvedinmitochondrialmetabolichomeostasis AT beebekristin mitochondrialhsp90paralogtrap1formsanoxphosregulatedtetramerandisinvolvedinmitochondrialmetabolichomeostasis AT jenkinslisam mitochondrialhsp90paralogtrap1formsanoxphosregulatedtetramerandisinvolvedinmitochondrialmetabolichomeostasis AT lyonsgaelync mitochondrialhsp90paralogtrap1formsanoxphosregulatedtetramerandisinvolvedinmitochondrialmetabolichomeostasis AT bernasconililia mitochondrialhsp90paralogtrap1formsanoxphosregulatedtetramerandisinvolvedinmitochondrialmetabolichomeostasis AT tsaifrancistf mitochondrialhsp90paralogtrap1formsanoxphosregulatedtetramerandisinvolvedinmitochondrialmetabolichomeostasis AT agarddavida mitochondrialhsp90paralogtrap1formsanoxphosregulatedtetramerandisinvolvedinmitochondrialmetabolichomeostasis AT neckerslen mitochondrialhsp90paralogtrap1formsanoxphosregulatedtetramerandisinvolvedinmitochondrialmetabolichomeostasis AT picarddidier mitochondrialhsp90paralogtrap1formsanoxphosregulatedtetramerandisinvolvedinmitochondrialmetabolichomeostasis |