Cargando…
Causal Learning via Manifold Regularization
This paper frames causal structure estimation as a machine learning task. The idea is to treat indicators of causal relationships between variables as ‘labels’ and to exploit available data on the variables of interest to provide features for the labelling task. Background scientific knowledge or an...
Autores principales: | Hill, Steven M., Oates, Chris J., Blythe, Duncan A., Mukherjee, Sach |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6986916/ https://www.ncbi.nlm.nih.gov/pubmed/31992961 |
Ejemplares similares
-
Causal network inference using biochemical kinetics
por: Oates, Chris J., et al.
Publicado: (2014) -
Prototype Regularized Manifold Regularization Technique for Semi-Supervised Online Extreme Learning Machine
por: Muhammad Zaly Shah, Muhammad Zafran, et al.
Publicado: (2022) -
Identifying Disease-Gene Associations With Graph-Regularized Manifold Learning
por: Luo, Ping, et al.
Publicado: (2019) -
Manifold regularization for sparse unmixing of hyperspectral images
por: Liu, Junmin, et al.
Publicado: (2016) -
Existence, uniqueness and regularity of the projection onto differentiable manifolds
por: Leobacher, Gunther, et al.
Publicado: (2021)