Cargando…
Long Noncoding RNA ZFPM2-AS1 Enhances the Malignancy of Cervical Cancer by Functioning as a Molecular Sponge of microRNA-511-3p and Consequently Increasing FGFR2 Expression
PURPOSE: A long noncoding RNA called ZFPM2 antisense RNA 1 (ZFPM2-AS1) has been verified as a key modulator in multiple human cancer types. Nonetheless, the expression and functions of ZFPM2-AS1 in cervical cancer remain poorly understood. Therefore, our purpose was to characterize the expression pa...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6986931/ https://www.ncbi.nlm.nih.gov/pubmed/32158261 http://dx.doi.org/10.2147/CMAR.S238373 |
_version_ | 1783492046483357696 |
---|---|
author | Dai, Jun Wei, Rujia Zhang, Peihai Liu, Peishu |
author_facet | Dai, Jun Wei, Rujia Zhang, Peihai Liu, Peishu |
author_sort | Dai, Jun |
collection | PubMed |
description | PURPOSE: A long noncoding RNA called ZFPM2 antisense RNA 1 (ZFPM2-AS1) has been verified as a key modulator in multiple human cancer types. Nonetheless, the expression and functions of ZFPM2-AS1 in cervical cancer remain poorly understood. Therefore, our purpose was to characterize the expression pattern, clinical value, and detailed roles of ZFPM2-AS1 in cervical cancer. METHODS: Reverse-transcription quantitative PCR was carried out to measure ZFPM2-AS1 expression in cervical cancer. A Cell Counting Kit-8 assay, flow cytometry, Transwell migration and invasion assays, and a tumor xenograft experiment were conducted to determine the influence of ZFPM2-AS1 on cervical cancer cell proliferation, apoptosis, migration, and invasion in vitro and on tumor growth in vivo, respectively. RESULTS: ZFPM2-AS1 was found to be aberrantly upregulated in cervical cancer, and its upregulation was associated with unfavorable values of clinical parameters. A ZFPM2-AS1 knockdown significantly reduced cervical cancer cell proliferation, migration, and invasion and increased apoptosis in vitro. The ZFPM2-AS1 knockdown decelerated tumor growth of cervical cancer cells in vivo. Molecular investigation indicated that ZFPM2-AS1 acts as a molecular sponge of microRNA-511-3p (miR-511-3p) in cervical cancer cells. Fibroblast growth factor receptor 2 (FGFR2) mRNA was validated as a direct target of miR-511-3p in cervical cancer, and its expression was positively modulated by ZFPM2-AS1. The effects of the ZFPM2-AS1 knockdown on malignant characteristics of cervical cancer cells were greatly attenuated by miR-511-3p inhibition. CONCLUSION: ZFPM2-AS1 promotes cervical cancer progression through upregulation of miR-511-3p–FGFR2 axis output, thereby pointing to possible diagnostics and therapeutics based on the ZFPM2-AS1–miR-511-3p–FGFR2 pathway. |
format | Online Article Text |
id | pubmed-6986931 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-69869312020-03-10 Long Noncoding RNA ZFPM2-AS1 Enhances the Malignancy of Cervical Cancer by Functioning as a Molecular Sponge of microRNA-511-3p and Consequently Increasing FGFR2 Expression Dai, Jun Wei, Rujia Zhang, Peihai Liu, Peishu Cancer Manag Res Original Research PURPOSE: A long noncoding RNA called ZFPM2 antisense RNA 1 (ZFPM2-AS1) has been verified as a key modulator in multiple human cancer types. Nonetheless, the expression and functions of ZFPM2-AS1 in cervical cancer remain poorly understood. Therefore, our purpose was to characterize the expression pattern, clinical value, and detailed roles of ZFPM2-AS1 in cervical cancer. METHODS: Reverse-transcription quantitative PCR was carried out to measure ZFPM2-AS1 expression in cervical cancer. A Cell Counting Kit-8 assay, flow cytometry, Transwell migration and invasion assays, and a tumor xenograft experiment were conducted to determine the influence of ZFPM2-AS1 on cervical cancer cell proliferation, apoptosis, migration, and invasion in vitro and on tumor growth in vivo, respectively. RESULTS: ZFPM2-AS1 was found to be aberrantly upregulated in cervical cancer, and its upregulation was associated with unfavorable values of clinical parameters. A ZFPM2-AS1 knockdown significantly reduced cervical cancer cell proliferation, migration, and invasion and increased apoptosis in vitro. The ZFPM2-AS1 knockdown decelerated tumor growth of cervical cancer cells in vivo. Molecular investigation indicated that ZFPM2-AS1 acts as a molecular sponge of microRNA-511-3p (miR-511-3p) in cervical cancer cells. Fibroblast growth factor receptor 2 (FGFR2) mRNA was validated as a direct target of miR-511-3p in cervical cancer, and its expression was positively modulated by ZFPM2-AS1. The effects of the ZFPM2-AS1 knockdown on malignant characteristics of cervical cancer cells were greatly attenuated by miR-511-3p inhibition. CONCLUSION: ZFPM2-AS1 promotes cervical cancer progression through upregulation of miR-511-3p–FGFR2 axis output, thereby pointing to possible diagnostics and therapeutics based on the ZFPM2-AS1–miR-511-3p–FGFR2 pathway. Dove 2020-01-23 /pmc/articles/PMC6986931/ /pubmed/32158261 http://dx.doi.org/10.2147/CMAR.S238373 Text en © 2020 Dai et al. http://creativecommons.org/licenses/by-nc/3.0/ This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Original Research Dai, Jun Wei, Rujia Zhang, Peihai Liu, Peishu Long Noncoding RNA ZFPM2-AS1 Enhances the Malignancy of Cervical Cancer by Functioning as a Molecular Sponge of microRNA-511-3p and Consequently Increasing FGFR2 Expression |
title | Long Noncoding RNA ZFPM2-AS1 Enhances the Malignancy of Cervical Cancer by Functioning as a Molecular Sponge of microRNA-511-3p and Consequently Increasing FGFR2 Expression |
title_full | Long Noncoding RNA ZFPM2-AS1 Enhances the Malignancy of Cervical Cancer by Functioning as a Molecular Sponge of microRNA-511-3p and Consequently Increasing FGFR2 Expression |
title_fullStr | Long Noncoding RNA ZFPM2-AS1 Enhances the Malignancy of Cervical Cancer by Functioning as a Molecular Sponge of microRNA-511-3p and Consequently Increasing FGFR2 Expression |
title_full_unstemmed | Long Noncoding RNA ZFPM2-AS1 Enhances the Malignancy of Cervical Cancer by Functioning as a Molecular Sponge of microRNA-511-3p and Consequently Increasing FGFR2 Expression |
title_short | Long Noncoding RNA ZFPM2-AS1 Enhances the Malignancy of Cervical Cancer by Functioning as a Molecular Sponge of microRNA-511-3p and Consequently Increasing FGFR2 Expression |
title_sort | long noncoding rna zfpm2-as1 enhances the malignancy of cervical cancer by functioning as a molecular sponge of microrna-511-3p and consequently increasing fgfr2 expression |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6986931/ https://www.ncbi.nlm.nih.gov/pubmed/32158261 http://dx.doi.org/10.2147/CMAR.S238373 |
work_keys_str_mv | AT daijun longnoncodingrnazfpm2as1enhancesthemalignancyofcervicalcancerbyfunctioningasamolecularspongeofmicrorna5113pandconsequentlyincreasingfgfr2expression AT weirujia longnoncodingrnazfpm2as1enhancesthemalignancyofcervicalcancerbyfunctioningasamolecularspongeofmicrorna5113pandconsequentlyincreasingfgfr2expression AT zhangpeihai longnoncodingrnazfpm2as1enhancesthemalignancyofcervicalcancerbyfunctioningasamolecularspongeofmicrorna5113pandconsequentlyincreasingfgfr2expression AT liupeishu longnoncodingrnazfpm2as1enhancesthemalignancyofcervicalcancerbyfunctioningasamolecularspongeofmicrorna5113pandconsequentlyincreasingfgfr2expression |