Cargando…

Predicting clustered weather patterns: A test case for applications of convolutional neural networks to spatio-temporal climate data

Deep learning techniques such as convolutional neural networks (CNNs) can potentially provide powerful tools for classifying, identifying, and predicting patterns in climate and environmental data. However, because of the inherent complexities of such data, which are often spatio-temporal, chaotic,...

Descripción completa

Detalles Bibliográficos
Autores principales: Chattopadhyay, Ashesh, Hassanzadeh, Pedram, Pasha, Saba
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6987167/
https://www.ncbi.nlm.nih.gov/pubmed/31992743
http://dx.doi.org/10.1038/s41598-020-57897-9
Descripción
Sumario:Deep learning techniques such as convolutional neural networks (CNNs) can potentially provide powerful tools for classifying, identifying, and predicting patterns in climate and environmental data. However, because of the inherent complexities of such data, which are often spatio-temporal, chaotic, and non-stationary, the CNN algorithms must be designed/evaluated for each specific dataset and application. Yet CNN, being a supervised technique, requires a large labeled dataset to start. Labeling demands (human) expert time which, combined with the limited number of relevant examples in this area, can discourage using CNNs for new problems. To address these challenges, here we (1) Propose an effective auto-labeling strategy based on using an unsupervised clustering algorithm and evaluating the performance of CNNs in re-identifying and predicting these clusters up to 5 days ahead of time; (2) Use this approach to label thousands of daily large-scale weather patterns over North America in the outputs of a fully-coupled climate model and show the capabilities of CNNs in re-identifying and predicting the 4 clustered regimes up to 5 days ahead of time. The deep CNN trained with 1000 samples or more per cluster has an accuracy of 90% or better for both identification and prediction while prediction accuracy scales weakly with the number of lead days. Accuracy scales monotonically but nonlinearly with the size of the training set, e.g. reaching 94% with 3000 training samples per cluster for identification and 93–76% for prediction at lead day 1–5, outperforming logistic regression, a simpler machine learning algorithm, by  ~ 25%. Effects of architecture and hyperparameters on the performance of CNNs are examined and discussed.