Cargando…
Predicting clustered weather patterns: A test case for applications of convolutional neural networks to spatio-temporal climate data
Deep learning techniques such as convolutional neural networks (CNNs) can potentially provide powerful tools for classifying, identifying, and predicting patterns in climate and environmental data. However, because of the inherent complexities of such data, which are often spatio-temporal, chaotic,...
Autores principales: | Chattopadhyay, Ashesh, Hassanzadeh, Pedram, Pasha, Saba |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6987167/ https://www.ncbi.nlm.nih.gov/pubmed/31992743 http://dx.doi.org/10.1038/s41598-020-57897-9 |
Ejemplares similares
-
Analog Forecasting of Extreme‐Causing Weather Patterns Using Deep Learning
por: Chattopadhyay, Ashesh, et al.
Publicado: (2020) -
STSC-SNN: Spatio-Temporal Synaptic Connection with temporal convolution and attention for spiking neural networks
por: Yu, Chengting, et al.
Publicado: (2022) -
Synthesis of neural networks for spatio-temporal spike pattern recognition and processing
por: Tapson, Jonathan C., et al.
Publicado: (2013) -
Spatio-Temporal Representation of an Electoencephalogram for Emotion Recognition Using a Three-Dimensional Convolutional Neural Network
por: Cho, Jungchan, et al.
Publicado: (2020) -
Explaining the physics of transfer learning in data-driven turbulence modeling
por: Subel, Adam, et al.
Publicado: (2023)