Cargando…
Near Real-Time Wildfire Progression Monitoring with Sentinel-1 SAR Time Series and Deep Learning
In recent years, the world witnessed many devastating wildfires that resulted in destructive human and environmental impacts across the globe. Emergency response and rapid response for mitigation calls for effective approaches for near real-time wildfire monitoring. Capable of penetrating clouds and...
Autores principales: | Ban, Yifang, Zhang, Puzhao, Nascetti, Andrea, Bevington, Alexandre R., Wulder, Michael A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6987169/ https://www.ncbi.nlm.nih.gov/pubmed/31992723 http://dx.doi.org/10.1038/s41598-019-56967-x |
Ejemplares similares
-
Real-time estimation of wildfire perimeters from curated crowdsourcing
por: Zhong, Xu, et al.
Publicado: (2016) -
Light-Weight Student LSTM for Real-Time Wildfire Smoke Detection
por: Jeong, Mira, et al.
Publicado: (2020) -
Near real time monitoring and forecasting for COVID-19 situational awareness
por: Stewart, Robert, et al.
Publicado: (2022) -
Wastewater monitoring in tourist cities as potential sentinel sites for near real-time dynamics of imported SARS-CoV-2 variants
por: Sangsanont, Jatuwat, et al.
Publicado: (2023) -
Understanding deep learning in land use classification based on Sentinel-2 time series
por: Campos-Taberner, Manuel, et al.
Publicado: (2020)