Cargando…
Internal short circuit detection in Li-ion batteries using supervised machine learning
With the proliferation of Li-ion batteries in smart phones, safety is the main concern and an on-line detection of battery faults is much wanting. Internal short circuit is a very critical issue that is often ascribed to be a cause of many accidents involving Li-ion batteries. A novel method that ca...
Autores principales: | Naha, Arunava, Khandelwal, Ashish, Agarwal, Samarth, Tagade, Piyush, Hariharan, Krishnan S., Kaushik, Anshul, Yadu, Ankit, Kolake, Subramanya Mayya, Han, Seongho, Oh, Bookeun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6987180/ https://www.ncbi.nlm.nih.gov/pubmed/31992751 http://dx.doi.org/10.1038/s41598-020-58021-7 |
Ejemplares similares
-
An Incremental Voltage Difference Based Technique for Online State of Health Estimation of Li-ion Batteries
por: Naha, Arunava, et al.
Publicado: (2020) -
Isolation of relaxation times under open-circuit conditions: Toward prognosis of nascent short circuits in Li-ion batteries
por: Bharathraj, Sagar, et al.
Publicado: (2023) -
Transfer learning based generalized framework for state of health estimation of Li-ion cells
por: Sahoo, Subhasmita, et al.
Publicado: (2022) -
Experimental data on open circuit voltage characterization for Li-ion batteries
por: Ahmed, Mostafa Shaban, et al.
Publicado: (2021) -
Cryogenic electron microscopy reveals that applied pressure promotes short circuits in Li batteries
por: Harrison, Katharine L., et al.
Publicado: (2021)