Cargando…
QC-Automator: Deep Learning-Based Automated Quality Control for Diffusion MR Images
Quality assessment of diffusion MRI (dMRI) data is essential prior to any analysis, so that appropriate pre-processing can be used to improve data quality and ensure that the presence of MRI artifacts do not affect the results of subsequent image analysis. Manual quality assessment of the data is su...
Autores principales: | Samani, Zahra Riahi, Alappatt, Jacob Antony, Parker, Drew, Ismail, Abdol Aziz Ould, Verma, Ragini |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6987246/ https://www.ncbi.nlm.nih.gov/pubmed/32038150 http://dx.doi.org/10.3389/fnins.2019.01456 |
Ejemplares similares
-
Distinct tumor signatures using deep learning-based characterization of the peritumoral microenvironment in glioblastomas and brain metastases
por: Samani, Zahra Riahi, et al.
Publicado: (2021) -
BLAST-QC: automated analysis of BLAST results
por: Torkian, Behzad, et al.
Publicado: (2020) -
Freewater estimatoR using iNtErpolated iniTialization (FERNET): Characterizing peritumoral edema using clinically feasible diffusion MRI data
por: Parker, Drew, et al.
Publicado: (2020) -
Automated Segmentation of Trigeminal Nerve and Cerebrovasculature in MR-Angiography Images by Deep Learning
por: Lin, Jinghui, et al.
Publicado: (2021) -
The LONI QC System: A Semi-Automated, Web-Based and Freely-Available Environment for the Comprehensive Quality Control of Neuroimaging Data
por: Kim, Hosung, et al.
Publicado: (2019)