Cargando…
Reactive, Proactive, and Inductive Agents: An Evolutionary Path for Biological and Artificial Spiking Networks
Complex environments provide structured yet variable sensory inputs. To best exploit information from these environments, organisms must evolve the ability to anticipate consequences of new stimuli, and act on these predictions. We propose an evolutionary path for neural networks, leading an organis...
Autores principales: | Sinapayen, Lana, Masumori, Atsushi, Ikegami, Takashi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6987297/ https://www.ncbi.nlm.nih.gov/pubmed/32038209 http://dx.doi.org/10.3389/fncom.2019.00088 |
Ejemplares similares
-
Learning by stimulation avoidance: A principle to control spiking neural networks dynamics
por: Sinapayen, Lana, et al.
Publicado: (2017) -
Proactive and reactive inhibitory control in rats
por: Mayse, Jeffrey D., et al.
Publicado: (2014) -
Proactive and reactive control by the medial frontal cortex
por: Stuphorn, Veit, et al.
Publicado: (2012) -
Temporal Dynamics of Proactive and Reactive Motor Inhibition
por: Liebrand, Matthias, et al.
Publicado: (2017) -
Common Neural Network for Different Functions: An Investigation of Proactive and Reactive Inhibition
por: Zhang, Fan, et al.
Publicado: (2019)