Cargando…

LAO-NCS: Laser Assisted Spin Torque Nano Oscillator-Based Neuromorphic Computing System

Dealing with big data, especially the videos and images, is the biggest challenge of existing Von-Neumann machines while the human brain, benefiting from its massive parallel structure, is capable of processing the images and videos in a fraction of second. The most promising solution, which has bee...

Descripción completa

Detalles Bibliográficos
Autores principales: Farkhani, Hooman, Böhnert, Tim, Tarequzzaman, Mohammad, Costa, José Diogo, Jenkins, Alex, Ferreira, Ricardo, Madsen, Jens Kargaard, Moradi, Farshad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6987377/
https://www.ncbi.nlm.nih.gov/pubmed/32038137
http://dx.doi.org/10.3389/fnins.2019.01429
Descripción
Sumario:Dealing with big data, especially the videos and images, is the biggest challenge of existing Von-Neumann machines while the human brain, benefiting from its massive parallel structure, is capable of processing the images and videos in a fraction of second. The most promising solution, which has been recently researched widely, is brain-inspired computers, so-called neuromorphic computing systems (NCS). The NCS overcomes the limitation of the word-at-a-time thinking of conventional computers benefiting from massive parallelism for data processing, similar to the brain. Recently, spintronic-based NCSs have shown the potential of implementation of low-power high-density NCSs, where neurons are implemented using magnetic tunnel junctions (MTJs) or spin torque nano-oscillators (STNOs) and memristors are used to mimic synaptic functionality. Although using STNOs as neuron requires lower energy in comparison to the MTJs, still there is a huge gap between the power consumption of spintronic-based NCSs and the brain due to high bias current needed for starting the oscillation with a detectable output power. In this manuscript, we propose a spintronic-based NCS (196 × 10) proof-of-concept where the power consumption of the NCS is reduced by assisting the STNO oscillation through a microwatt nanosecond laser pulse. The experimental results show the power consumption of the STNOs in the designed NCS is reduced by 55.3% by heating up the STNOs to 100°C. Moreover, the average power consumption of spintronic layer (STNOs and memristor array) is decreased by 54.9% at 100°C compared with room temperature. The total power consumption of the proposed laser assisted STNO-based NCS (LAO-NCS) at 100°C is improved by 40% in comparison to a typical STNO-based NCS at room temperature. Finally, the energy consumption of the LAO-NCA at 100°C is expected to reduce by 86% compared with a typical STNO-based NCS at the room temperature.