Cargando…
Deep Learning for Deep Chemistry: Optimizing the Prediction of Chemical Patterns
Computational Chemistry is currently a synergistic assembly between ab initio calculations, simulation, machine learning (ML) and optimization strategies for describing, solving and predicting chemical data and related phenomena. These include accelerated literature searches, analysis and prediction...
Autores principales: | Cova, Tânia F. G. G., Pais, Alberto A. C. C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6988795/ https://www.ncbi.nlm.nih.gov/pubmed/32039134 http://dx.doi.org/10.3389/fchem.2019.00809 |
Ejemplares similares
-
DeepReac+: deep active learning for quantitative modeling of organic chemical reactions
por: Gong, Yukang, et al.
Publicado: (2021) -
Combining Cellulose and Cyclodextrins: Fascinating Designs for Materials and Pharmaceutics
por: Cova, Tânia F., et al.
Publicado: (2018) -
Optimizing Chemical Reactions with Deep Reinforcement Learning
por: Zhou, Zhenpeng, et al.
Publicado: (2017) -
Exploring PAZ/3′-overhang interaction to improve siRNA specificity. A combined experimental and modeling study
por: Alagia, Adele, et al.
Publicado: (2018) -
Predicting hydration layers on surfaces using deep learning
por: Ranawat, Yashasvi S., et al.
Publicado: (2021)