Cargando…
Low-cost scalable discretization, prediction, and feature selection for complex systems
Finding reliable discrete approximations of complex systems is a key prerequisite when applying many of the most popular modeling tools. Common discretization approaches (e.g., the very popular K-means clustering) are crucially limited in terms of quality, parallelizability, and cost. We introduce a...
Autores principales: | Gerber, S., Pospisil, L., Navandar, M., Horenko, I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6989146/ https://www.ncbi.nlm.nih.gov/pubmed/32064328 http://dx.doi.org/10.1126/sciadv.aaw0961 |
Ejemplares similares
-
A scalable approach to the computation of invariant measures for high-dimensional Markovian systems
por: Gerber, Susanne, et al.
Publicado: (2018) -
Low-Cost Probabilistic 3D Denoising with Applications for Ultra-Low-Radiation Computed Tomography
por: Horenko, Illia, et al.
Publicado: (2022) -
Discrete Global Grid Systems as scalable geospatial frameworks for characterizing coastal environments
por: Bousquin, Justin
Publicado: (2021) -
Scalable Unsupervised Learning for Deep Discrete Generative Models
por: Guiraud, Enrico
Publicado: (2021) -
Co-Inference of Data Mislabelings Reveals Improved Models in Genomics and Breast Cancer Diagnostics
por: Gerber, Susanne, et al.
Publicado: (2022)