Cargando…
Highly Combinatorial Genetic Interaction Analysis Reveals a Multi-Drug Transporter Influence Network
Many traits are complex, depending non-additively on variant combinations. Even in model systems, such as the yeast S. cerevisiae, carrying out the high-order variant-combination testing needed to dissect complex traits remains a daunting challenge. Here, we describe “X-gene” genetic analysis (XGA),...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6989212/ https://www.ncbi.nlm.nih.gov/pubmed/31668799 http://dx.doi.org/10.1016/j.cels.2019.09.009 |
Sumario: | Many traits are complex, depending non-additively on variant combinations. Even in model systems, such as the yeast S. cerevisiae, carrying out the high-order variant-combination testing needed to dissect complex traits remains a daunting challenge. Here, we describe “X-gene” genetic analysis (XGA), a strategy for engineering and profiling highly combinatorial gene perturbations. We demonstrate XGA on yeast ABC transporters by engineering 5,353 strains, each deleted for a random subset of 16 transporters, and profiling each strain’s resistance to 16 compounds. XGA yielded 85,648 genotype-to-resistance observations, revealing high-order genetic interactions for 13 of the 16 transporters studied. Neural networks yielded intuitive functional models and guided exploration of fluconazole resistance, which was influenced non-additively by five genes. Together, our results showed that highly combinatorial genetic perturbation can functionally dissect complex traits, supporting pursuit of analogous strategies in human cells and other model systems. |
---|