Cargando…
Mechanistic ligand-receptor interaction model: operational model of agonism
This tutorial explains the basic principles of mechanistic ligand-receptor interaction model, which is an operational model of agonism. A growing number of agonist drugs, especially immune oncology drugs, is currently being developed. In this tutorial, time-dependent ordinary differential equation f...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society for Clinical Pharmacology and Therapeutics
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6989234/ https://www.ncbi.nlm.nih.gov/pubmed/32055560 http://dx.doi.org/10.12793/tcp.2018.26.3.115 |
_version_ | 1783492364140019712 |
---|---|
author | Kim, Hyungsub Lim, Hyeong-Seok |
author_facet | Kim, Hyungsub Lim, Hyeong-Seok |
author_sort | Kim, Hyungsub |
collection | PubMed |
description | This tutorial explains the basic principles of mechanistic ligand-receptor interaction model, which is an operational model of agonism. A growing number of agonist drugs, especially immune oncology drugs, is currently being developed. In this tutorial, time-dependent ordinary differential equation for simple E(max) operational model of agonism was derived step by step. The differential equation could be applied in a pharmacodynamic modeling software, such as NONMEM, for use in non-steady state experiments, in which experimental data are generated while the interaction between ligand and receptor changes over time. Making the most of the non-steady state experimental data would simplify the experimental processes, and furthermore allow us to identify more detailed kinetics of a potential drug. The operational model of agonism could be useful to predict the optimal dose for agonistic drugs from in vitro and in vivo animal pharmacology experiments at the very early phase of drug development. |
format | Online Article Text |
id | pubmed-6989234 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Korean Society for Clinical Pharmacology and Therapeutics |
record_format | MEDLINE/PubMed |
spelling | pubmed-69892342020-02-13 Mechanistic ligand-receptor interaction model: operational model of agonism Kim, Hyungsub Lim, Hyeong-Seok Transl Clin Pharmacol Tutorial This tutorial explains the basic principles of mechanistic ligand-receptor interaction model, which is an operational model of agonism. A growing number of agonist drugs, especially immune oncology drugs, is currently being developed. In this tutorial, time-dependent ordinary differential equation for simple E(max) operational model of agonism was derived step by step. The differential equation could be applied in a pharmacodynamic modeling software, such as NONMEM, for use in non-steady state experiments, in which experimental data are generated while the interaction between ligand and receptor changes over time. Making the most of the non-steady state experimental data would simplify the experimental processes, and furthermore allow us to identify more detailed kinetics of a potential drug. The operational model of agonism could be useful to predict the optimal dose for agonistic drugs from in vitro and in vivo animal pharmacology experiments at the very early phase of drug development. Korean Society for Clinical Pharmacology and Therapeutics 2018-09 2018-09-14 /pmc/articles/PMC6989234/ /pubmed/32055560 http://dx.doi.org/10.12793/tcp.2018.26.3.115 Text en Copyright © 2018 Translational and Clinical Pharmacology http://creativecommons.org/licenses/by-nc/3.0/ It is identical to the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/). |
spellingShingle | Tutorial Kim, Hyungsub Lim, Hyeong-Seok Mechanistic ligand-receptor interaction model: operational model of agonism |
title | Mechanistic ligand-receptor interaction model: operational model of agonism |
title_full | Mechanistic ligand-receptor interaction model: operational model of agonism |
title_fullStr | Mechanistic ligand-receptor interaction model: operational model of agonism |
title_full_unstemmed | Mechanistic ligand-receptor interaction model: operational model of agonism |
title_short | Mechanistic ligand-receptor interaction model: operational model of agonism |
title_sort | mechanistic ligand-receptor interaction model: operational model of agonism |
topic | Tutorial |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6989234/ https://www.ncbi.nlm.nih.gov/pubmed/32055560 http://dx.doi.org/10.12793/tcp.2018.26.3.115 |
work_keys_str_mv | AT kimhyungsub mechanisticligandreceptorinteractionmodeloperationalmodelofagonism AT limhyeongseok mechanisticligandreceptorinteractionmodeloperationalmodelofagonism |