Cargando…
Revealing the predictability of intrinsic structure in complex networks
Structure prediction is an important and widely studied problem in network science and machine learning, finding its applications in various fields. Despite the significant progress in prediction algorithms, the fundamental predictability of structures remains unclear, as networks’ complex underlyin...
Autores principales: | Sun, Jiachen, Feng, Ling, Xie, Jiarong, Ma, Xiao, Wang, Dashun, Hu, Yanqing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6989503/ https://www.ncbi.nlm.nih.gov/pubmed/31996676 http://dx.doi.org/10.1038/s41467-020-14418-6 |
Ejemplares similares
-
Identify hidden spreaders of pandemic over contact tracing networks
por: Huang, Shuhong, et al.
Publicado: (2023) -
6th Workshop on Complex Networks
por: Mangioni, Giuseppe, et al.
Publicado: (2015) -
Indirect influence in social networks as an induced percolation phenomenon
por: Xie, Jiarong, et al.
Publicado: (2022) -
Low Complexity Induces Structure in Protein Regions Predicted as Intrinsically Disordered
por: Gonçalves-Kulik, Mariane, et al.
Publicado: (2022) -
Generative complex networks within a dynamic memristor with intrinsic variability
por: Guo, Yunpeng, et al.
Publicado: (2023)