Cargando…
A Statistical Approach of Background Removal and Spectrum Identification for SERS Data
SERS (surface-enhanced Raman scattering) enhances the Raman signals, but the plasmonic effects are sensitive to the chemical environment and the coupling between nanoparticles, resulting in large and variable backgrounds, which make signal matching and analyte identification highly challenging. Remo...
Autores principales: | Wang, Chuanqi, Xiao, Lifu, Dai, Chen, Nguyen, Anh H., Littlepage, Laurie E., Schultz, Zachary D., Li, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6989639/ https://www.ncbi.nlm.nih.gov/pubmed/31996718 http://dx.doi.org/10.1038/s41598-020-58061-z |
Ejemplares similares
-
High-Precision Detection of Cellular Drug Response Based on SERS Spectrum and Multivariate Statistical Analysis
por: Wu, Fengfang, et al.
Publicado: (2023) -
Statistical analysis of arthroplasty data: I. Introduction and background
por: Ranstam, Jonas, et al.
Publicado: (2011) -
Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data
por: Davis, Nicole M., et al.
Publicado: (2018) -
A Background-Free SERS Strategy for Sensitive Detection of Hydrogen Peroxide
por: Chen, Kaixin, et al.
Publicado: (2022) -
upU-Net Approaches for Background Emission Removal in Fluorescence Microscopy
por: Benfenati, Alessandro
Publicado: (2022)