Cargando…
Electronic Structure and Conformational Properties of Polybenzimidazole-Based Ionenes—A Density Functional Theory Investigation
[Image: see text] Polybenzimidazole-based ionenes are explored for use in both alkaline anion-exchange membrane fuel cells and alkaline polymer electrolyzers. Poly-(hexamethyl-p-terphenylbenzimidazolium) (HMT-PMBI), the material of interest in this article, is exceptionally hydroxide-stable and wate...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6990417/ https://www.ncbi.nlm.nih.gov/pubmed/32010820 http://dx.doi.org/10.1021/acsomega.9b03116 |
_version_ | 1783492495829630976 |
---|---|
author | Mokhtari, Mehrdad Eslamibidgoli, Mohammad Javad Eikerling, Michael H. |
author_facet | Mokhtari, Mehrdad Eslamibidgoli, Mohammad Javad Eikerling, Michael H. |
author_sort | Mokhtari, Mehrdad |
collection | PubMed |
description | [Image: see text] Polybenzimidazole-based ionenes are explored for use in both alkaline anion-exchange membrane fuel cells and alkaline polymer electrolyzers. Poly-(hexamethyl-p-terphenylbenzimidazolium) (HMT-PMBI), the material of interest in this article, is exceptionally hydroxide-stable and water-insoluble. The impact of the degree of methylation on conformations and electronic structure properties of HMT-PMBI oligomers, from the monomer to the pentamer, is studied with density functional theory calculations. Optimization studies are presented for both the gas phase and in the presence of implicit water. In addition, time-dependent density functional theory is employed to generate the UV–vis absorption spectra of the studied systems. Results are insightful for experimentalists and theorists investigating the impact of synthetic and environmental conditions on the conformation and electronic properties of polybenzimidazole-based membranes. |
format | Online Article Text |
id | pubmed-6990417 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-69904172020-01-31 Electronic Structure and Conformational Properties of Polybenzimidazole-Based Ionenes—A Density Functional Theory Investigation Mokhtari, Mehrdad Eslamibidgoli, Mohammad Javad Eikerling, Michael H. ACS Omega [Image: see text] Polybenzimidazole-based ionenes are explored for use in both alkaline anion-exchange membrane fuel cells and alkaline polymer electrolyzers. Poly-(hexamethyl-p-terphenylbenzimidazolium) (HMT-PMBI), the material of interest in this article, is exceptionally hydroxide-stable and water-insoluble. The impact of the degree of methylation on conformations and electronic structure properties of HMT-PMBI oligomers, from the monomer to the pentamer, is studied with density functional theory calculations. Optimization studies are presented for both the gas phase and in the presence of implicit water. In addition, time-dependent density functional theory is employed to generate the UV–vis absorption spectra of the studied systems. Results are insightful for experimentalists and theorists investigating the impact of synthetic and environmental conditions on the conformation and electronic properties of polybenzimidazole-based membranes. American Chemical Society 2020-01-10 /pmc/articles/PMC6990417/ /pubmed/32010820 http://dx.doi.org/10.1021/acsomega.9b03116 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Mokhtari, Mehrdad Eslamibidgoli, Mohammad Javad Eikerling, Michael H. Electronic Structure and Conformational Properties of Polybenzimidazole-Based Ionenes—A Density Functional Theory Investigation |
title | Electronic Structure
and Conformational Properties
of Polybenzimidazole-Based Ionenes—A Density Functional Theory
Investigation |
title_full | Electronic Structure
and Conformational Properties
of Polybenzimidazole-Based Ionenes—A Density Functional Theory
Investigation |
title_fullStr | Electronic Structure
and Conformational Properties
of Polybenzimidazole-Based Ionenes—A Density Functional Theory
Investigation |
title_full_unstemmed | Electronic Structure
and Conformational Properties
of Polybenzimidazole-Based Ionenes—A Density Functional Theory
Investigation |
title_short | Electronic Structure
and Conformational Properties
of Polybenzimidazole-Based Ionenes—A Density Functional Theory
Investigation |
title_sort | electronic structure
and conformational properties
of polybenzimidazole-based ionenes—a density functional theory
investigation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6990417/ https://www.ncbi.nlm.nih.gov/pubmed/32010820 http://dx.doi.org/10.1021/acsomega.9b03116 |
work_keys_str_mv | AT mokhtarimehrdad electronicstructureandconformationalpropertiesofpolybenzimidazolebasedionenesadensityfunctionaltheoryinvestigation AT eslamibidgolimohammadjavad electronicstructureandconformationalpropertiesofpolybenzimidazolebasedionenesadensityfunctionaltheoryinvestigation AT eikerlingmichaelh electronicstructureandconformationalpropertiesofpolybenzimidazolebasedionenesadensityfunctionaltheoryinvestigation |