Cargando…
Athermal Crystal Defect Dynamics in Si Revealed by Cryo-High-Voltage Electron Microscopy
[Image: see text] Low-temperature crystal defect dynamics in Si has been studied by a newly developed cryo-high-voltage electron microscopy. The planar {113} defects of self-interstitial atoms were introduced at 94 K by 1 MeV electron irradiation with damage higher than 0.42 displacements per atom (...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6990428/ https://www.ncbi.nlm.nih.gov/pubmed/32010818 http://dx.doi.org/10.1021/acsomega.9b03028 |
Sumario: | [Image: see text] Low-temperature crystal defect dynamics in Si has been studied by a newly developed cryo-high-voltage electron microscopy. The planar {113} defects of self-interstitial atoms were introduced at 94 K by 1 MeV electron irradiation with damage higher than 0.42 displacements per atom (dpa), unlike past findings. The defects once grew and then shrunk during the observation. We show that the nucleation and the dissociation dynamics of the {113} defects can be attributed to an athermal process, which is deduced from anomalously fast diffusion of self-interstitial atoms at a low temperature. |
---|