Cargando…
Improve the dosimetric outcome in bilateral head and neck cancer (HNC) treatment using spot-scanning proton arc (SPArc) therapy: a feasibility study
BACKGROUND: To explore the dosimetric improvement, delivery efficiency, and plan robustness for bilateral head and neck cancer (HNC) treatment utilizing a novel proton therapy technique – the spot-scanning proton arc (SPArc) therapy. METHODS: We evaluated fourteen bilateral HNC patients retrospectiv...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6990547/ https://www.ncbi.nlm.nih.gov/pubmed/32000817 http://dx.doi.org/10.1186/s13014-020-1476-9 |
_version_ | 1783492524773474304 |
---|---|
author | Liu, Gang Li, Xiaoqiang Qin, An Zheng, Weili Yan, Di Zhang, Sheng Stevens, Craig Kabolizadeh, Peyman Ding, Xuanfeng |
author_facet | Liu, Gang Li, Xiaoqiang Qin, An Zheng, Weili Yan, Di Zhang, Sheng Stevens, Craig Kabolizadeh, Peyman Ding, Xuanfeng |
author_sort | Liu, Gang |
collection | PubMed |
description | BACKGROUND: To explore the dosimetric improvement, delivery efficiency, and plan robustness for bilateral head and neck cancer (HNC) treatment utilizing a novel proton therapy technique – the spot-scanning proton arc (SPArc) therapy. METHODS: We evaluated fourteen bilateral HNC patients retrospectively. Both SPArc and 3-field Intensity Modulated Proton Therapy (IMPT) plans were generated for each patient using the same robust optimization parameters. The prescription doses were 70Gy (relative biological effectiveness (RBE) for CTV_high and 60Gy[RBE] for CTV_low. Clinically significant dosimetric parameters were extracted and compared. Root-mean-square deviation dose (RMSDs) Volume Histogram(RVH) was used to evaluate the plan robustness. Total treatment delivery time was estimated based on the machine parameters. RESULTS: The SPArc plan was able to provide equivalent or better robust target coverage while showed significant dosimetric improvements over IMPT in most of the organs at risk (OARs). More specifically, it reduced the mean dose of the ipsilateral parotid, contralateral parotid, and oral cavity by 25.8%(p = 0.001), 20.8%(p = 0.001) and 20.3%(p = 0.001) respectively compared to IMPT. This technique reduced D1 (the maximum dose covering 1% volume of a structure) of cord and brain stem by 20.8% (p = 0.009) and 10.7% (p = 0.048), respectively. SPArc also reduced the average integral dose by 17.2%(p = 0.001) and external V3Gy (the volume received 3Gy[RBE]) by 8.3%(p = 0.008) as well. RVH analysis showed that the SPArc plans reduced the dose uncertainties in most OARs compared to IMPT, such as cord: 1.1 ± 0.4Gy[RBE] vs 0.7 ± 0.3Gy[RBE](p = 0.001), brain stem: 0.9 ± 0.7Gy[RBE] vs 0.7 ± 0.7Gy[RBE](p = 0.019), contralateral parotid: 2.5 ± 0.5Gy[RBE] vs 2.2 ± 0.6Gy[RBE](p = 0.022) and ipsilateral parotid: 3.1 ± 0.7Gy[RBE] vs 2.8 ± 0.6Gy[RBE](p = 0.004) respectively. The average total estimated treatment delivery time were 283.4 ± 56.2 s, 469.2 ± 62.0 s and 1294.9 ± 106.7 s based on energy-layer-switching-time (ELST) of 0.1 s, 1 s, and 5 s respectively for SPArc plans, compared to the respective values of 328.0 ± 47.6 s(p = 0.002), 434.1 ± 52.0 s(p = 0.002), and 901.7 ± 74.8 s(p = 0.001) for 3-field IMPT plans. The potential clinical benefit of utilizing SPArc will lead to a decrease in the mean probability of salivary flow dysfunction by 31.3%(p = 0.001) compared with IMPT. CONCLUSIONS: SPArc could significantly spare OARs while providing a similar or better robust target coverage compared with IMPT in the treatment of bilateral HNC. In the modern proton system with ELST less than 0.5 s, SPArc could potentially be implemented in the routine clinic with a practical, achievable treatment delivery efficiency. |
format | Online Article Text |
id | pubmed-6990547 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-69905472020-02-03 Improve the dosimetric outcome in bilateral head and neck cancer (HNC) treatment using spot-scanning proton arc (SPArc) therapy: a feasibility study Liu, Gang Li, Xiaoqiang Qin, An Zheng, Weili Yan, Di Zhang, Sheng Stevens, Craig Kabolizadeh, Peyman Ding, Xuanfeng Radiat Oncol Research BACKGROUND: To explore the dosimetric improvement, delivery efficiency, and plan robustness for bilateral head and neck cancer (HNC) treatment utilizing a novel proton therapy technique – the spot-scanning proton arc (SPArc) therapy. METHODS: We evaluated fourteen bilateral HNC patients retrospectively. Both SPArc and 3-field Intensity Modulated Proton Therapy (IMPT) plans were generated for each patient using the same robust optimization parameters. The prescription doses were 70Gy (relative biological effectiveness (RBE) for CTV_high and 60Gy[RBE] for CTV_low. Clinically significant dosimetric parameters were extracted and compared. Root-mean-square deviation dose (RMSDs) Volume Histogram(RVH) was used to evaluate the plan robustness. Total treatment delivery time was estimated based on the machine parameters. RESULTS: The SPArc plan was able to provide equivalent or better robust target coverage while showed significant dosimetric improvements over IMPT in most of the organs at risk (OARs). More specifically, it reduced the mean dose of the ipsilateral parotid, contralateral parotid, and oral cavity by 25.8%(p = 0.001), 20.8%(p = 0.001) and 20.3%(p = 0.001) respectively compared to IMPT. This technique reduced D1 (the maximum dose covering 1% volume of a structure) of cord and brain stem by 20.8% (p = 0.009) and 10.7% (p = 0.048), respectively. SPArc also reduced the average integral dose by 17.2%(p = 0.001) and external V3Gy (the volume received 3Gy[RBE]) by 8.3%(p = 0.008) as well. RVH analysis showed that the SPArc plans reduced the dose uncertainties in most OARs compared to IMPT, such as cord: 1.1 ± 0.4Gy[RBE] vs 0.7 ± 0.3Gy[RBE](p = 0.001), brain stem: 0.9 ± 0.7Gy[RBE] vs 0.7 ± 0.7Gy[RBE](p = 0.019), contralateral parotid: 2.5 ± 0.5Gy[RBE] vs 2.2 ± 0.6Gy[RBE](p = 0.022) and ipsilateral parotid: 3.1 ± 0.7Gy[RBE] vs 2.8 ± 0.6Gy[RBE](p = 0.004) respectively. The average total estimated treatment delivery time were 283.4 ± 56.2 s, 469.2 ± 62.0 s and 1294.9 ± 106.7 s based on energy-layer-switching-time (ELST) of 0.1 s, 1 s, and 5 s respectively for SPArc plans, compared to the respective values of 328.0 ± 47.6 s(p = 0.002), 434.1 ± 52.0 s(p = 0.002), and 901.7 ± 74.8 s(p = 0.001) for 3-field IMPT plans. The potential clinical benefit of utilizing SPArc will lead to a decrease in the mean probability of salivary flow dysfunction by 31.3%(p = 0.001) compared with IMPT. CONCLUSIONS: SPArc could significantly spare OARs while providing a similar or better robust target coverage compared with IMPT in the treatment of bilateral HNC. In the modern proton system with ELST less than 0.5 s, SPArc could potentially be implemented in the routine clinic with a practical, achievable treatment delivery efficiency. BioMed Central 2020-01-30 /pmc/articles/PMC6990547/ /pubmed/32000817 http://dx.doi.org/10.1186/s13014-020-1476-9 Text en © The Author(s). 2020 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Liu, Gang Li, Xiaoqiang Qin, An Zheng, Weili Yan, Di Zhang, Sheng Stevens, Craig Kabolizadeh, Peyman Ding, Xuanfeng Improve the dosimetric outcome in bilateral head and neck cancer (HNC) treatment using spot-scanning proton arc (SPArc) therapy: a feasibility study |
title | Improve the dosimetric outcome in bilateral head and neck cancer (HNC) treatment using spot-scanning proton arc (SPArc) therapy: a feasibility study |
title_full | Improve the dosimetric outcome in bilateral head and neck cancer (HNC) treatment using spot-scanning proton arc (SPArc) therapy: a feasibility study |
title_fullStr | Improve the dosimetric outcome in bilateral head and neck cancer (HNC) treatment using spot-scanning proton arc (SPArc) therapy: a feasibility study |
title_full_unstemmed | Improve the dosimetric outcome in bilateral head and neck cancer (HNC) treatment using spot-scanning proton arc (SPArc) therapy: a feasibility study |
title_short | Improve the dosimetric outcome in bilateral head and neck cancer (HNC) treatment using spot-scanning proton arc (SPArc) therapy: a feasibility study |
title_sort | improve the dosimetric outcome in bilateral head and neck cancer (hnc) treatment using spot-scanning proton arc (sparc) therapy: a feasibility study |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6990547/ https://www.ncbi.nlm.nih.gov/pubmed/32000817 http://dx.doi.org/10.1186/s13014-020-1476-9 |
work_keys_str_mv | AT liugang improvethedosimetricoutcomeinbilateralheadandneckcancerhnctreatmentusingspotscanningprotonarcsparctherapyafeasibilitystudy AT lixiaoqiang improvethedosimetricoutcomeinbilateralheadandneckcancerhnctreatmentusingspotscanningprotonarcsparctherapyafeasibilitystudy AT qinan improvethedosimetricoutcomeinbilateralheadandneckcancerhnctreatmentusingspotscanningprotonarcsparctherapyafeasibilitystudy AT zhengweili improvethedosimetricoutcomeinbilateralheadandneckcancerhnctreatmentusingspotscanningprotonarcsparctherapyafeasibilitystudy AT yandi improvethedosimetricoutcomeinbilateralheadandneckcancerhnctreatmentusingspotscanningprotonarcsparctherapyafeasibilitystudy AT zhangsheng improvethedosimetricoutcomeinbilateralheadandneckcancerhnctreatmentusingspotscanningprotonarcsparctherapyafeasibilitystudy AT stevenscraig improvethedosimetricoutcomeinbilateralheadandneckcancerhnctreatmentusingspotscanningprotonarcsparctherapyafeasibilitystudy AT kabolizadehpeyman improvethedosimetricoutcomeinbilateralheadandneckcancerhnctreatmentusingspotscanningprotonarcsparctherapyafeasibilitystudy AT dingxuanfeng improvethedosimetricoutcomeinbilateralheadandneckcancerhnctreatmentusingspotscanningprotonarcsparctherapyafeasibilitystudy |