Cargando…

Which anatomic structures are responsible for the reduction loss after hybrid stabilization of osteoporotic fractures of the thoracolumbar spine?

INTRODUCTION: Hybrid stabilization is an accepted therapy strategy for unstable osteoporotic thoracolumbar fractures. However, a moderate reduction loss has been reported and it remains unclear which anatomic structure is responsible for the reduction loss. METHODS: This retrospective study was perf...

Descripción completa

Detalles Bibliográficos
Autores principales: Spiegl, Ulrich J., Ahrberg, Annette B., Anemüller, Christine, Jarvers, Jan-Sven, Glasmacher, Stefan, von der Höh, Nicolaus, Josten, Christoph, Heyde, Christoph-Eckhard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6990563/
https://www.ncbi.nlm.nih.gov/pubmed/31996180
http://dx.doi.org/10.1186/s12891-020-3065-3
Descripción
Sumario:INTRODUCTION: Hybrid stabilization is an accepted therapy strategy for unstable osteoporotic thoracolumbar fractures. However, a moderate reduction loss has been reported and it remains unclear which anatomic structure is responsible for the reduction loss. METHODS: This retrospective study was performed at a level I trauma center. Patients aged 61 and older were stabilized using hybrid stabilization after suffering acute and unstable osteoporotic vertebral body fractures at the thoracolumbar spine. Posterior stabilization was done short-segmental and minimal invasive with cement-augmentation of all pedicle screws. The minimum follow-up has been 2 years. The outcome parameters were the reduction loss and the relative loss of height of both intervertebral discs adjacent to the fractured vertebral body, the fractured vertebral body and a reference disc (intervertebral disc superior of the stabilization) between the postoperative and latest lateral radiographs. Additionally, implant positioning and loosening was analyzed. RESULTS: 29 mainly female (72%) patients (73.3 ± 6.0 years) were included. Fractures consisted of 26 incomplete burst fractures and 3 complete burst fractures of the thoracolumbar junction (Th11 – L2: 86%) and the midlumbar spine. The mean follow-up time was 36 months (range: 24–58 months). The mean reduction loss was 7.7° (range: 1–25). The relative loss of heights of both intervertebral discs adjacent to the fractured vertebral body, the reference disc, and the central vertebral body were significant. Thereby, the relative loss of the superior disc height was significant higher compared to the reference disc. Additionally, only the relative loss of central vertebral body height and reduction loss correlated significantly. There were no signs of implant loosening in any patient. CONCLUSIONS: The mean reduction loss was moderate 3 years after hybrid stabilization of unstable osteoporotic vertebral fractures of the thoracolumbar spine. A significant loss of both adjacent disc heights and the central vertebral body was seen, with the highest loss in the superior adjacent disc significantly outranging the reference disc. The superior adjacent intervertebral disc and the central part of the fractured vertebral body seem to be responsible for the majority of reduction loss.