Cargando…
Electron density learning of non-covalent systems
Chemists continuously harvest the power of non-covalent interactions to control phenomena in both the micro- and macroscopic worlds. From the quantum chemical perspective, the strategies essentially rely upon an in-depth understanding of the physical origin of these interactions, the quantification...
Autores principales: | Fabrizio, Alberto, Grisafi, Andrea, Meyer, Benjamin, Ceriotti, Michele, Corminboeuf, Clemence |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6991182/ https://www.ncbi.nlm.nih.gov/pubmed/32055318 http://dx.doi.org/10.1039/c9sc02696g |
Ejemplares similares
-
Transferable Machine-Learning Model of the Electron
Density
por: Grisafi, Andrea, et al.
Publicado: (2018) -
Learning Electron Densities in the Condensed Phase
por: Lewis, Alan M., et al.
Publicado: (2021) -
Multi-scale approach for the prediction of atomic scale properties
por: Grisafi, Andrea, et al.
Publicado: (2020) -
Data-powered augmented volcano plots for homogeneous catalysis
por: Wodrich, Matthew D., et al.
Publicado: (2020) -
Simultaneous Visualization of Covalent and Noncovalent
Interactions Using Regions of Density Overlap
por: de Silva, Piotr, et al.
Publicado: (2014)